2 resultados para O32 - Management of Technological Innovation and R

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

B-phycoerythrin (BPE) and R-phycocyanin (RPC) were purified from Porphyridium cruentum by Sephadex G-200 chromatography, then the BPE was attached covalently to the RPC by reacting their amino groups to form the artificially covalent BPE-RPC conjugate in which the excitation energy can transfer from the BPE to the RPC with low efficiency. Meanwhile, the intact phycobilisome (PBS) consisting of BPE, RPC, APC and L-CM was isolated and purified from Porphyridium cruentum, and the purified PBS was found to keep intact if the solution contains sucrose. Comparison of spectroscopic properties between the purified PBS and the BPE-RPC conjugate suggests that the BPE-RPC conjugate is much more stable than the purified PBS. The construction of BPE-RPC conjugate with low efficiency of the excitation energy transfer may be useful for preparing phycobiliprotein probes. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polysiphonia urceolata R-phycoerythrin and Porphyridium cruentum B-phycoerythrin were degraded with proteinaseK, and then the nearly native gamma subunits were isolated from the reaction mixture. The process of degradation of phycoerythrin with proteinaseK showed that the gamma subunit is located in the central cavity of (alpha beta)(6) hexamer of phycoerythrin. Comparative analysis of the spectra of the native phycoerythrin, the phycoerythrin at pH 12 and the isolated gamma subunit showed that the absorption peaks of phycoerythrobilins on alpha or beta subunit are at 535 nm (or 545 nm) and 565 nm, the fluorescence emission maximum at 580 nm; the absorption peak of phycoerythrobilins on the isolated gamma subunit is at 589 nm, the fluorescence emission peak at 620 nm which overlaps the absorption maximum of C-phycocyanin and perhaps contributes to the energy transfer with high efficiency between phycoerythrin and phycocyanin in phycobilisome; the absorption maximum of phycourobilin on the isolated gamma subunit is at 498 nm, which is the same as that in native phycoerythrin, and the fluorescence emission maximum at 575 nm.