8 resultados para New centers

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Radiation-induced crystallization of polyamide-1010 (PA1010) or nylon-1010 containing heterogeneous nuclei (neodymium oxide, Nd2O3) is discussed in this paper by Wide Angle X-ray Diffraction (WAXD) and Differential Scanning Calorimetry (DSC). The results show that at low dosage the crystallinities of the irradiated specimens increase, while crystallite size (L(hkl)) decreases, indicating that some new crystallites are produced in the course of irradiation. The new centers were brought about in the fold surface of the lamellae. Copyright (C) 1997 Elsevier Science Ltd

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Three new absorption bands, appearing around 670, 865 and 980 nm, are observed in BaFCl:Eu2+ phosphors. They are ascribed to F aggregates formed by association of F centers or by trapping of electrons to the primary F-n(+) (n = 2,3,4) centers. The growth curves of F and F-aggregated centers are similar and may be divided into three stages. The photostimulated luminescence (PSL) decays by stimulation into the absorption bands of F centers and of F aggregates are different; the former decay logarithmically and the latter decay hyperbolically. Some non-radiative processes related to F aggregates, such as electron migration, occur accompanying the PSL process, which may reduce the PSL efficiency and sensitivity of the phosphors. (C) 1997 Published by Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photoluminescence of a GaAsN alloy with 0.1% nitrogen has been studied under pressures up to 8.5 GPa at 33, 70, and 130 K. At ambient pressure, emissions from both the GaAsN alloy conduction band edge and discrete nitrogen-related bound states are observed. Under applied pressure, these two types of emissions shift with rather different pressure coefficients: about 40 meV/GPa for the nitrogen-related features, and about 80 meV/GPa for the alloy band-edge emission. Beyond 1 GPa, these discrete nitrogen-related peaks broaden and evolve into a broad band. Three new photoluminescence bands emerge on the high-energy side of the broad band, when the pressure is above 2.5, 4.5, and 5.25 GPa, respectively, at 33 K. In view of their relative energy positions and pressure behavior, we have attributed these new emissions to the nitrogen-pair states NN3 and NN4, and the isolated nitrogen state N-x. In addition, we have attributed the high-energy component of the broad band formed above 1 GPa to resonant or near-resonant NN1 and NN2, and its main body to deeper cluster centers involving more than two nitrogen atoms. This study reveals the persistence of all the paired and isolated nitrogen-related impurity states, previously observed only in the dilute doping limit, into a rather high doping level. Additionally, we find that the responses of different N-related states to varying N-doping levels differ significantly and in a nontrivial manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

nThermal processing of strained ln(0.2)Ga(0.8)As/GaAs graded-index separate confinement heterostructure single quantum well laser diodes grown by molecular beam epitaxy is investigated. It was found that rapid thermal annealing can improve the 77 K photoluminescence efficiency and electron emission from the active layer, due to removal of nonradiative centers from the InGaAs/GaAs interface. Because of the interdiffusion of Al and Ga atoms, rapid thermal annealing increases simultaneously the density of DX centers in the AlGaAs graded layer. The current stressing experiments of post-growth and annealed laser diodes are indicative of a corresponding increase in the concentration of DX centers, suggesting that DX centers may be responsible for the degradation of laser diode performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, BPO4 and Ba2+-doped BPO4 powder samples were prepared by the sol-gel process using glycerol and poly(ethylene glycol) as additives. The structure and optical properties of the resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), diffuse reflection spectra, photoluminescence (PL) excitation and emission spectra, quantum yield, kinetic decay, and electron paramagnetic resonance (EPR), respectively. It was found that the undoped BPO4 showed a weak purple blue emission (409 nm, lifetime 6.4 ns) due to the carbon impurities involved in the host lattice. Doping Ba2+ into BPO4 resulted in oxygen-related defects as additional emission centers which enhanced the emission intensity greatly (> 10x) and shifted the emission to a longer-wavelength region (lambda(max) = 434 nm; chromaticity coordinates: x = 0.174, y = 0. 187) with a bluish-white color. The highest emission intensity was obtained ;when doping 6 mol % Ba2+ in BPO4, which has a quantum yield as high as 31%. The luminescent mechanisms of BPO4 and Ba2+-doped BPO4 were discussed in detail according to the existing models for silica-based materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In our study, the Eu2+ doped Li2CaSiO4 phosphors were initially synthesized by high temperature solid state method, and their luminescent properties were also investigated. Eu2+ ions occupied 8-coordinatid distorted dodecahedral Ca sites, leading to strong crystal field splitting. The strong crystal field splitting made the broad excitation band extending from UV to visible region. In addition, the high concentration of Li+ ions in the structure constrained the distortion of the emission centers, then resulted in a small stokes shift, similar to 1100 cm(-1). Under excitation, the Li2CaSiO4:Eu2+ phosphors emitted bluish green light with peak of 480 nm, FWHM of 31 nm and color coordination of (0.06, 0.44). The Eu2+ doped Li2CaSiO4 phosphor would be suitable for bluish green phosphor of white LEDs due to its excellent excitation profile and chromaticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two kinds of luminescent centers an observed in BaMgAl10O17:Eu2+ phosphor. Influence of flux on luminescence of Eu2+ in the phosphor is discussed in detail. There exists Eu2+ (F-) center (a luminescent center with 277 nm excitation band and 386 nm emission band) due to the substitution of F- ions for O2- ions, Effective energy transfer from Eu2+ (F-) to Eu2+ (O2-) (a luminescent center with 334 nm excitation band and 450 nm emission band) is observed. The quenching concentration of Eu2+ in BaMgAl10O17 is raised by 0.20 mole per mole host due to forming of new luminescent center Eu2+ (F-). (C) 2001 Elsevier Science Ltd. All rights reserved.