8 resultados para Neonatal pigs
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Characterization of the porcine differentially expressed PDK4 gene and association with meat quality
Resumo:
To investigate the differential expression of genes in the skeletal muscle between Yorkshire and Chinese indigenous breed Meishan pigs, suppression subtractive hybridization was carried out and many genes were proved to be expressed significantly different in the two breeds. One gene highly expressed in Meishan but lowly expressed in Yorkshire specific library, shared strong homology with human pyruvate dehydrogenase kinase 4 (PDK4). Using semi-quantity and quantity PCR, We confirmed its differential expression between the two breeds. Temporal and spatial expression analysis indicated that porcine PDK4 gene is highly expressed in skeletal muscle and the highest in neonatal pigs. Complete cDNA cloning and sequence analysis revealed that porcine PDK4 gene contains an open reading frame of 1,221 bp. The deduced amino acid sequence showed conservation in evolution. A G/A mutation in intron 9 was identified and association analysis showed that it was significantly associated with intramuscular fat, muscle water content.
Resumo:
We examined protein polymorphism of 20 native pig breeds in China and 3 introduced pig breeds. Thirty loci have been investigated, among which six loci were found to be polymorphic. Especially, the polymorphism of malate dehydrogenase (MDH), adenylate kinase (AK), and two new alleles of adenosine deaminase (ADA) had not been reported in domestic pigs and wild pigs. The percentage of polymorphic loci (P), the mean heterozygosity (H), and the mean number of alleles (A) are 0.200, 0.065, and 1.300, respectively. The degree of genetic variability of Chinese pigs as a whole was higher than that of goats, lower than that of cattle and horses, and similar to that of sheep. Using the gene frequencies of the 30 loci, Nei's genetic distance among the 20 native breeds in China and 3 introduced pig breeds was calculated by the formula of Nei. The program NEIGHBOR in PHYLIP 3.5c was chosen to construct an UPGMA tree and a NJ tree. Our results show that, of the total genetic variation found in the native pig breeds in China, 31% (0.31) is ascribable to genetic differences among breeds. About 69% of the total genetic variation is found within breeds. Most breeds are in linkage disequilibrium. The patterns of genetic similarities between the Chinese native pig breeds were not in agreement with the proposed pig type classification.
Resumo:
Background: Previously reported evidence indicates that pigs were independently domesticated in multiple places throughout the world. However, a detailed picture of the origin and dispersal of domestic pigs in East Asia has not yet been reported. Results:
Resumo:
Mitochondrial DNA (mtDNA) of six breeds of native domestic pigs from Yunnan province, southwest China, and two wild boars obtained from Sichuan, China, and Vietnam was analyzed using 20 restriction endonucleases that recognize six nucleotides. Restriction maps were made by double-digestion methods and polymorphic sites were located on the map. According to their mtDNA restriction types, all the breeds were classified into six groups. Genetic distances among groups were calculated to define their phylogenetic relationships. The relationship between the Sichuan wild boar and domestic pigs is close, while the Vietnamese wild boar is relatively far from them, so the domestic pigs in southwest China are likely to have originated from a wild pig which distributed in west China. We compare our results with previous reports in literature and discuss the relationship among Chinese pigs, Japanese pigs, and European pigs. The mtDNA cleavage pattern of the Mingguang pig digested by EcoRV was identical to that of Duroc; mutations at the EcoRI site, detected in the mtDNA of two Dahe pigs, are the same as in the Vietnamese wild boar, suggesting that mutational hot spots exist in the mtDNA of pigs.
Resumo:
Brain structure and function experience dramatic changes from embryonic to postnatal development. Microarray analyses have detected differential gene expression at different stages and in disease models, but gene expression information during early brain development is limited. We have generated >27 million reads to identify mRNAs from the mouse cortex for>16,000 genes at either embryonic day 18 (E18) or postnatal day 7 (P7), a period of significant synapto-genesis for neural circuit formation. In addition, we devised strategies to detect alternative splice forms and uncovered more splice variants. We observed differential expression of 3,758 genes between the 2 stages, many with known functions or predicted to be important for neural development. Neurogenesis-related genes, such as those encoding Sox4, Sox11, and zinc-finger proteins, were more highly expressed at E18 than at P7. In contrast, the genes encoding synaptic proteins such as synaptotagmin, complexin 2, and syntaxin were up-regulated from E18 to P7. We also found that several neurological disorder-related genes were highly expressed at E18. Our transcriptome analysis may serve as a blueprint for gene expression pattern and provide functional clues of previously unknown genes and disease-related genes during early brain development.
Resumo:
Phocoenids are generally considered to be nonwhistling species that produce only high-frequency pulsed sounds. Here our results show that neonatal finless porpoises (Neophocaena phocaenoides) frequently produce clear low-frequency (2-3 kHz) pulsed signals, without distinct high-frequency energy, just after birth and can produce both low- (2-3 kHz) and high-frequency (>100 kHz) pulsed signals simultaneously until about 20 days postnatal. The results indicate that low-frequency signals of neonatal finless porpoises are not an early form of high-frequency signals and suggest that low- and high-frequency signals may be produced by different sound production mechanisms. (C) 2008 Acoustical Society of America.
Resumo:
beta-Adrenoceptors(beta-ARs) play a critical role in regulating cardiac functions under both physiological and pathological conditions. To further explore the mechanisms through which beta-ARs perform its actions, proteomic approaches were adopted to study the global protein patterns in cultured neonatal rat cardiomyocytes exposed to isoproterenol (ISO). A modified method, "Mirror Images in One Gel", was used to improve the reproducibility and resolution power of two-dimensional electrophoresis. A 2-DE map with a good reproducibility was obtained in which 1281 70 spots were detected and about 1191 +/- 54 spots were matched, with an average matching rate of 92.9%. Nine proteins with significant changes were identified by using peptide mass fingerprinting(PMF) data obtained via MALDI-MS.