14 resultados para Nanometric porosity

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Z-scan technique is useful for measuring the nonlinear refractive index of thin films. In conventional Z-scan theories, two effects are often ignored, namely the losses due to the internal multi-interference and the nonlinear absorption inside the sample. Therefore, the theories are restricted to relatively thick films. For films thinner than about 100 nm, the two effects become significant, and thus cannot be ignored. In the present work, we present a Z-scan theory that takes both effects into account. The proposed model calculation is suitable for optical nonlinear films of nanometric thickness. With numerical simulations, we demonstrate dramatic deviations from the conventional Z-scan calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rare-earth metals were hydrogenated in the presence of TiCl4 catalyst in tetrahydrofuran (THF) at 45 degreesC under normal pressure. Transmission electron micrographs showed that the re. sulting lanthanide hydrides were in the form of nanoparticles. The rate of hydrogenation decreased with increasing atomic number of the rare-earth elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly reactive magnesium powder of nanometric size, which was generated by the thermal decomposition of magnesium anthracene . 3THF under vacuum, can react with N-2 under atmospheric pressure, even at 300 degrees C, to form magnesium nitride. The rate and extent of the reaction can be improved effectively by doping the magnesium powder with a small amount of nickel or titanium compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium nitride (Mg3N2) was synthesized by the reaction of magnesium in the highly reactive form (Mg*) with nitrogen at 450 degrees C under normal pressure. The effect of doping with nickel dichloride on the nitridation of Mg* was investigated. Differential thermal analysis (DTA) of Mg* systems and transmission electron microscopy (TEM) measurement of the product formed were carried out. TEM measurement showed that the particle size of the Mg3N2 synthesized was in the nanometric range. The dependence of nitridation of the NiCl2-doped Mg* on temperature was investigated at temperatures ranging from 300 to 500 degrees C. The nitridation of NiCl2-doped Mg* could occur even at temperature as low as 300 degrees C. (C) 1999 Kluwer Academic Publishers.