217 resultados para NYLON-1010
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Full Paper: A study has been made on the annealing of nylon-1010 under high pressures. Heat treatment of melt-crystallized nylon-1010 was performed at 250degreesC for 30 min in the pressure range 0.7 similar to 2.5 GPa. It was found that the triclinic crystals of virgin nylon-1010 were retained at pressures less than 1.0 GPa or larger than 1.2 GPa. The X-ray diffraction intensity of (100) planes decreased with increasing pressure. The diffraction peaks shifted slightly to higher angles (2theta) relative to the virgin nylon-1010, indicating dense packing of polymer chains at high pressures. The highest melting temperature was 208degreesC for the sample annealed at 1.5 GPa. No extended-chain crystals were formed under the experimental conditions. Crosslinking occurred in the pressure range 1.0 similar to 1.2 GPa. The structure of the crosslinked samples was characterized by means of infrared spectroscopy and X-ray photoelectron spectroscopy. It is concluded that a mechanism of crosslinking via carbodiimide can explain the nature of crosslinking of nylon-1010 annealed at high pressures. The remarkable changes of the structure of annealed nylon-1010 are also discussed in this article.
Resumo:
The modification of ethylene-propylene copolymer (EPM) has been accomplished by melt grafting of maleic anhydride (MAH) molecules promoted by radical initiators. The resulting EPM-g-MAH and EPM have been used to obtain binary nylon 1010/EPM or nylon 1010/EPM-g-MAH blends by melt mixing. It was found that the EPM-g-MAH copolymer used as the second component has a profound effect upon the properties of the resulting blends. This behavior has been attributed to a series of chemical and physicochemical interactions taking place between the two components. The interactions are due to the presence of the anhydride functionality on the copolymer and do not occur when this functionality is absent. The interaction has been confirmed by Fourier-transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, and scanning electron microscopic.
Resumo:
A comparison of radiation damage to nylon 1010 (denoted nylon-a) and nylon 1010 containing neodymium oxide (Nd2O3) (denoted nylon-b) was made by DSC, WAXD, ESR and the determination of gel fractions. The results show that radiation damage to nylon-b is delayed, and radiation damage to nylon-a is more severe than that to nylon-b, due to the protection of the fold surface of the lamellae. Furthermore, the fact that the damage begins with the fold surface of the lamellae is confirmed. (C) 1996 Elsevier Science Limited
Resumo:
Noncompatibilized and compatibilized blends of nylon 1010/PP blends having five different viscosity ratios were prepared by melt extrusion. Glycidyl methacrylate-grafted-polypropylene (PP-g-GMA) was used as the compatibilizer to enbance the adhesion between the two polymers and to stabilize the blend morphology. The effect of the viscosity ratio on the morphology of nylon 1010/polypropylene blends was investigated, with primary attention to the phase-inversion behavior and the average particle size of the dispersed phase. The relationship between the mechanical properties and the phase-inversion composition was investigated as well. Investigation of the morphology of the blends by microscopy indicated that the smaller the viscosity ratio (eta(PP)/eta(PA)) the smaller was the polypropylene concentration at which the phase inversion took place and polypropylene became the continuous phase. The compatibilizer induced a sharp reduction of particle size, but did not have a major effect on the phase-inversion point. An improvement :in the mechanical properties was found when nylon 1010 provided the matrix phase. (C) 1996 John Wiley & Sons, Inc.
Resumo:
The melting of the nascent state nylon 1010 samples melt condensation polymerized with different M(eta) have been studied by DSC. The relations of melting point, content of higher order crystal with M(eta) are similar, the plots like a peak, at M(eta)=1.48x10(4) have the maximum. The melting heat, melting entropy and crystallinity are decreased gradually with M(eta) increasing.
Resumo:
离子聚合物在Nylon-1010/PP共混物中的增容作用曲桂杰,刘景江(中国科学院长春应用化学研究所长春130022)关键词聚丙烯,Nylon-1010,离子聚合物,增容选择离子聚合物作为高聚物共混的增容剂,通过离子间的相互作用可达到增容效果[1]。...
Resumo:
利用偏光显微镜(PLM),差示扫描量热计及广角X-射线衍射等手段研究了热致液晶共聚酯/Nylon-1010共混体系.发现当热致液晶共聚酯(HTH10)含量达到30%时共混物微结构与纯HTH10相似.尼龙-1010的结晶度先是随HTH10含量增加而增加,随后又随之下降,但其结晶温度却随HTH10加入而单调下降,共混物的熔融热焓△Hm在HTH10含量为30%时与计算值有较大的偏差,广角X-射线衍射结果表明,此时共混物结构发生了较为明显的变化,两组份之间在此时存在一定的相互作用.
Resumo:
WAXD, SAXS, FTIR, DSC and density techniques have been used to investigate the crystal structure, crystal density rho(c), amorphous density rho(a), equilibrium heat of fusion DELTAH(m)degrees and equilibrium melting temperature T(m)degrees. By extrapolating the straight lines in the FTIR absorbance against density plot to zero intensity, rho(c) and rho(a) were estimated to be 1.098 and 1.003 g/cm3 respectively. The rho(c) obtained was too low in value. From X-ray diffraction patterns of uniaxially oriented fibres, the crystal structure of Nylon-1010 was determined. The Nylon-1010 crystallized in the triclinic system, with lattice dimensions: a = 4.9 angstrom, b = 5.4 angstrom, c = 27.8 angstrom, alpha = 49-degrees, beta = 77-degrees, gamma = 63.5-degrees. The unit cell contained one monomeric unit, the space group was P1BAR, and the correct value of rho(c) was 1.135 g/cm3. The degree of crystallinity of the polymer was determined as about 60% (at RT) using Ruland's method. SAXS has been used to investigate the crystalline lamellar thickness, long period, transition zone, the specific inner surface and the electron density difference between the crystalline and amorphous regions for Nylon-1010. The analysis of data was based upon a one-dimensional electron-density correlation function. DELTAH(m)degrees was estimated to be 244.0 J/g by extrapolation of DELTAH(m)degrees in the plot of heat of fusion against specific volume of semicrystalline specimens to the completely crystalline condition (V(sp)c = 1/rho(c)). Owing to the ease of recrystallization of melt-crystallized Nylon-1010 specimens, the well-known Hoffman's T(m)-T(c) method failed in determining T(m)degrees and a Kamide double extrapolation method was adopted. The T(m)degrees value so obtained was 487 K.
Resumo:
Radiation-induced crystallization of polyamide-1010 (PA1010) or nylon-1010 containing heterogeneous nuclei (neodymium oxide, Nd2O3) is discussed in this paper by Wide Angle X-ray Diffraction (WAXD) and Differential Scanning Calorimetry (DSC). The results show that at low dosage the crystallinities of the irradiated specimens increase, while crystallite size (L(hkl)) decreases, indicating that some new crystallites are produced in the course of irradiation. The new centers were brought about in the fold surface of the lamellae. Copyright (C) 1997 Elsevier Science Ltd
Resumo:
用WAXD方法测定了Nylon-1010为三斜晶系结晶结构;α=4.9(?),b=5.4(?),c=27.8(?),α=49°,β=77°,γ=63.5°,每个聚合物单胞含有一个重复单元,空间群为P(?)。模压试样用Ruland方法分析结晶度为60%。以上。电子密度相关函数法分析了SAXS现象,求得了Nylon-1010结晶片层厚度、过渡层厚度、长周期、比内表面及电子密度差。
Resumo:
本文用DSC,WAXD,ESR和介电谱以及凝胶分数测定等技术,研究Nylon-1010的聚集态对γ-辐射化学反应以及辐照后热处理结果的影响。结果表明,辐照Nylon-1010的交联与裂解反应主要发生在非晶区或结晶表面,进一步证明了非晶区也是辐射后交联和后裂解主要反应区。
Resumo:
亚稳定性是凝聚态物质的一个重要特征。常温常压下,热力学上不稳定的、而实际上存在的相,都可称之为亚稳相。通常,影响物质亚稳态存在的外界因素有温度、压力、电场、磁场等等,而相态本身的大小也是决定它稳性的一个重要因素,这就是所谓的尺寸效应。随着纳米技术和微处理器技术的飞速发展,材料的应用尺寸日趋于小型化和微型化。研究聚合物相行为和相变中的尺寸效应,对于充分理解高分子凝聚态物理学的基本问题具有极度其重要的科学意义,它还为纳米科技中材料特殊的结构和性能提供新的认识途径和理论基础,这必将极度大地促进纳米材料的实用化进程。本文正是基于这样一种相变中的尺寸效应,选用了三种具有多晶型结构的结晶聚合物,聚偏氟乙烯(PVDF),聚反式1,4-丁二烯(TPBD)和尼龙1010(nylon 1010),对它们的晶体结构及其相转变过程和转变条件作了较详细的研究,着重探讨了各种晶型稳态和亚稳态的存在条件。在这三种聚合物当中,发现小尺寸晶体趋向于形成二维高有序的六方或拟六方堆积结构,成功地证明了晶体结构对尺寸的依赖性。在上述研究中,首次成功地为PVDF营造了不同程度的空间受限结晶环境,得到了尺寸小于100纳米受限结晶的亚稳态β晶;通过结合使用常温和低温的电子衍射术,并利用计算机模拟技术,提出了尺寸影响的TPBD相转变的具体实现过程;发现了培养尼龙1010单晶的另一理想溶剂二甲基甲酰胺(DMF),并首次用它培养出十分完善的单晶体;引入尺寸效应的观点来解释尼龙1010的Brill转变现象,定量地确定了基转变温度对尺寸的依赖关系,为解释这一古老但至仿仍存在极大争议的尼龙中特有的转变现象开辟了创造性的思维方式;首次用极度稀溶液喷雾法获得了尼龙1010的纳米和微米级微纤维晶,并解释了它的形成原因。
Resumo:
Nanocomposites based on poly(iminosebacoyl imino-decamethylene) (PA1010) and multiwall carbon nanotubes (MWNTs) were successfully prepared by melt blending technique. environmental scanning electron microscope micrographs of the fracture surfaces showed that not only is there an evenly dispersion of MWNTs throughout the PA1010 matrix but also a strongly interfacial adhesion with the matrix. The combined effect of more defects on MWNTs and low temperature buckling fracture is mainly responsible for the broken tubes. Differential scanning calorimeter results showed that the MWNTs acted as a nucleation agent and increased the crystallization rate and decreased crystallite size. In the linear region, rheological measurements showed a distinct change in the frequency dependence of storage modulus, loss modulus, and complex viscosity particularly at low frequencies. We conclude that the rheological percolation threshold might occur when the content of MWNTs is over 2 wt% in the composites.