13 resultados para N-ISOPROPYLACRYLAMIDE

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of novel temperature- and pH-responsive graft copolymers, poly(L-glutamic acid)-g-poly(N-isopropylacrylamide), were synthesized by coupling amino-semitelechelic poly(N-isopropylacrylamide) with N-hydroxysuccinimide-activated poly(L-glutamic acid). The graft copolymers and their precursors were characterized, by ESI-FTICR Mass Spectrum, intrinsic viscosity measurements and proton nuclear magnetic resonance (H-1 NMR). The phase-transition and aggregation behaviors of the graft copolymers in aqueous solutions were investigated by the turbidity measurements and dynamic laser scattering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, well-defined temperature- and pH-sensitive core-shell microgels were synthesized by graft copolymerization in the absence of surfactant and stabilizer. The microgel particles consisted of poly (N-isopropylacrylamide (NIPAm)) core crosslinked with N, N'-methylene-bisacrylamide (MBA) and polyvinylamine (PVAm) shell. The effect of MBA content and NIPAm/PVAm ratio on microgel size was investigated. SEM showed that the microgels were spherical and had narrow particle-size distribution. TEM images of the microgels clearly displayed well-defined core-shell morphologies. Zeta-potential measurement further elucidated that the microgels possessed positively charged PVAm molecules on the microgel surface. Turbidity measurement and H-1-nuclear magnetic resonance (NMR) experiments indicated that the VPTT of microgels was the same as the LCST of PNIPAm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We successfully prepared a new kind of thermoresponsive and fluorescent complex of Tb(III) and PNIPAM-g-P(NIPAM-co-St) (PNNS) core-shell nanoparticle. It was found that Tb(III) mainly bonded to 0 of the carbonyl groups of PNNS, forming the novel (PNIPAM-g-P(NIPAM-co-St))-Tb(III) (PNNS-Tb(III)) complex. The maximum emission intensity of the complex at 545 nm is enhanced about 223 times comparing to that of the pure Tb(III). The intramolecular energy transfer efficiency from PNNS to Tb(III) reaches 50%. When the weight ratio of Tb(III) and the PNNS-Tb(III) complex is 1.2 wt.%, the enhancement of the emission fluorescence intensity at 545 nm is highest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amphiphilic supramolecular miktoarm star copolymers linked by ionic bonds with controlled molecular weight and low polydispersity have been successfully synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization using an ion-bonded macromolecular RAFT agent (macro-RAFT agent). Firstly, a new tetrafunctional initiator, dimethyl 4,6-bis(bromomethyl)-isophthalate, was synthesized and used as an initiator for atom transfer radical polymerization (ATRP) of styrene to form polystyrene (PSt) containing two ester groups at the middle of polymer chain. Then, the ester groups were converted into tertiary amino groups and the ion-bonded supramolecular macro-RAFT agent was obtained through the interaction between the tertiary amino group and 2-dodecylsulfanylthiocarbonylsulfanyl-2-methyl propionic acid (DMP). Finally, ion-bonded amphiphilic miktoarm star copolymer, (PSt)(2)-poly(N-isopropyl-acrylamide)(2), was prepared by RAFT polymerization of N-isopropylacrylamide (NIPAM) in the presence of the supramolecular macro-RAFT agent. The polymerization kinetics was investigated and the molecular weight and the architecture of the resulting star polymers were characterized by means of H-1-NMR, FTIR, and GPC techniques. (c) 2008 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of full interpenetrating polymer network (full-IPN) films of poly(acrylic acid) (PAA)/poly (vinyl alcohol) (PVA) were prepared by radical solution polymerization and sequential IPN technology. Attenuated total reflectance-Fourier transform infrared spectroscopy, swelling properties, mechanical properties, morphology, and glass transition temperature of the films were investigated. FTIR spectra analysis showed that new interaction hydrogen bonds between PVA and PAA were formed. Swelling property of the films in distilled water and different pH buffer solution was studied. Swelling ratio increased with increasing PAA content of IPN films in all media, and swelling ratio decreased with increasing PVA crosslink degree. Tensile strength and elongation at break related not only to the constitution of IPNs but also to the swelling ratio of IPNs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A circular system is employed in this paper to investigate the swelling behaviors of polyampholyte hydrogels; this circular system can effectively eliminate the disturbance of various factors and keep the surrounding environment constant. It is found that there exists a spontaneous volume transition to the collapsed state of polyampholyte hydrogels, which is attributed to the overshooting effect, and the transition can occur repeatedly under certain conditions. C-13 NMR is employed to investigate the swelling behavior of polyampholyte hydrogels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of novel pH- and temperature-responsive diblock copolymers composed of poly(N-isopropylacrylamide) (PNIPAM) and poly[(L-glutamic acid)-co-(gamma-benzyl L-glutamate)] [P(GA-co-BLG)] were prepared. The influence of hydrophobic benzyl groups on the phase transition of the copolymers was studied for the first time. With increasing BLG content in P(GA-co-BLG) block, the thermal phase transition of the diblock copolymer became sharper at a designated pH and the critical curve of phase diagram of the diblock copolymer shifted to a higher pH region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intelligent polymers or stimuli-responsive polymers may exhibit distinct transitions in physical-chemical properties, including conformation, polarity, phase structure and chemical composition in response to changes in environmental stimuli. Due to their unique 'intelligent' characteristics, stimuli-sensitive polymers have found a wide variety of applications in biomedical and nanotechnological fields. This review focuses on the recent developments in biomedical application of intelligent polymer systems, such as intelligent hydrogel systems, intelligent drug delivery systems and intelligent molecular recognition systems. Also, the possible future directions for the application of these intelligent polymer systems in the biomedical field are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel nanostructured, high transparent, and pH sensitive poly(2-hydroxyethyl methacrylate-co-methacryliac acid)/poly(vinyl alcohol) (P(HEMA-co-MA)/PVA) interpenetrating polymer network (IPN) hydrogel films were prepared by precipitation copolymerization of aqueous phase and sequential IPN technology. The first P(HEMA-co-MA) network was synthesized in aqueous solution of PVA, then followed by aldol condensation reaction, it formed multiple IPN nanostructured hydrogel film. The film samples were characterized by IR, SEM, DSC, and UV-vis spectrum. The transmittance arrived at 93%. Swelling and deswelling behaviors showed the multiple IPN nanostructured film had rapid response. The mechanical properties of all the IPN films improved than that of PVA film. Using crystal violet as a model drug, the release behaviors of the films were studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel intelligent hydrogels composed of biodegradable and pH-sensitive poly(L-glutamic acid) (PGA) and temperature sensitive poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate) (PNH) were synthesized and characterized for controlled release of hydrophilic drug. The influence of pH on the equilibrium swelling ratios of the hydrogels was investigated. A higher PNH content resulted in lower equilibrium swelling ratios. Although temperature had little influence on the swelling behaviors of the hydrogels, the changes of optical transmittance of hydrogels as a function of temperature were marked, which showed that the PNH part of hydrogel exhibited hydrophobic property at temperature above the lower critical solution temperature (LCST). The biodegradation rate of the stimuli-sensitive hydrogels in the presence of enzyme was directly proportional to the PGA content. Lysozyme was chosen as a model drug and loaded into the hydrogels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A facile and efficient strategy for the syntheses of novel hyperbranched poly(ether amide)s (HPEA) from multihydroxyl primary amines and (meth)acryloyl chloride has been developed. The chemical structures of the HPEAs were confirmed by IR and NMR spectra. Analyses of SEC (size exclusion chromatography) and viscosity characterizations revealed the highly branched structures of the polymers obtained. The resultant hyperbranched polymers contain abundant hydroxyl groups. The thermoresponsive property was obtained from in situ surface modification of abundant OH end groups with N-isopropylacrylamide (NIPAAm). The study oil temperature-dependent characteristics has revealed that NIPAAm-g-HPEA exhibits an adjustable lower critical solution temperature (LCST) of about 34-42 degrees C depending on the grafting degree. More interestingly, the work provided an interesting phenomenon where the HPEA backbones exhibited strong blue photoluminescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A polymer pair composed of poly( N-isopropylacrylamide-co-2-hydroxyethyl methacrylate terminated oligo( L-lactide)) ( poly( NIPAAm-co-HEMAOLLA)) graft random copolymer and poly( D-lactide) ( PDLA) homopolymer was self-assembled into micelles with a diameter around 100 nm through the stereocomplexation between the OLLA branches of the graft copolymer and the PDLA homopolymer. The specific intermolecular stereocomplexation was considered as the powerful ordered aggregation force in the micelle cores. The shell's component of poly( NIPAAm-co-HEMA) and its thermosensitivity were proved by H-1 nuclear magnetic resonance ( NMR) and dynamic light scattering ( DLS), respectively. The incorporation of PDLA homopolymer into the graft copolymer affected the micelle size and the critical micelle concentration ( CMC). The incorporation of even a small quantity ( 11 wt%) of PDLA into the graft copolymer micelles resulted in a great decrease of the micelle size. For the graft copolymer with low per cent grafting of 18%, the size of the corresponding micelles decreased slightly even if the PDLA content increased up to 33 wt%. For the graft copolymer with high per cent grafting of 58%, with the further increase of PDLA content, the size of the corresponding micelles at first decreased further and then began to increase. The molecular weight of the PDLA did not significantly affect the micelle size.