46 resultados para Multi-model inference
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
详细描述了用光纤耦合、波长复用的全息光盘仔储光路.指出在全息光盘驱动器即将市场化的今天.由于其光路简单、光学元件较少、性价比高.很有可能成为新的全息光盘驱动器的核心技术之一。由于短波长单模光纤及其双波长光纤分束器件的要求比较高.而用多模光纤进行准单模输出调整.以及用分光棱镜进行光束的分光.同时用对双波长敏感的光致聚合物材料进行存储.其光谱灵敏度均匀.光谱范围互不重叠。实验结果表明.光路结构合理.存储效果良好。
Resumo:
A global numerical model for shallow water flows on the cubed-sphere grid is proposed in this paper. The model is constructed by using the constrained interpolation profile/multi-moment finite volume method (CIP/MM FVM). Two kinds of moments, i.e. the point value (PV) and the volume-integrated average (VIA) are defined and independently updated in the present model by different numerical formulations. The Lax-Friedrichs upwind splitting is used to update the PV moment in terms of a derivative Riemann problem, and a finite volume formulation derived by integrating the governing equations over each mesh element is used to predict the VIA moment. The cubed-sphere grid is applied to get around the polar singularity and to obtain uniform grid spacing for a spherical geometry. Highly localized reconstruction in CIP/MM FVM is well suited for the cubed-sphere grid, especially in dealing with the discontinuity in the coordinates between different patches. The mass conservation is completely achieved over the whole globe. The numerical model has been verified by Williamson's standard test set for shallow water equation model on sphere. The results reveal that the present model is competitive to most existing ones. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
An optical communication scheme of 2-D pattern transfer based on imaging optics for submarine laser uplink communication (SLUC) is suggested. Unlike the methods aiming at avoiding neighboring crosstalk used in traditional multi-channel optical beam transferring, we make full use of the overlapping of each spreading beam other than controlling divergence effect of each beam to avoid interference noise. The apparent parameters have been introduced to simplify theoretical analysis of optical pattern transfer problem involving underwater condition, with the help of which the complex beam propagation inside two kinds of mediums can be easily reduced to brief beam transfer only inside air medium. In this paper, optical transmission path and receiver terminal optics geometry have been described in detail. The link range equation and system uplink performance analysis have also been given. At last, results of a proof-of-concept experiment indicate good feasibility of the proposed SLUC model. © 2007 Elsevier GmbH. All rights reserved.
Resumo:
Abstract. Latent Dirichlet Allocation (LDA) is a document level language model. In general, LDA employ the symmetry Dirichlet distribution as prior of the topic-words’ distributions to implement model smoothing. In this paper, we propose a data-driven smoothing strategy in which probability mass is allocated from smoothing-data to latent variables by the intrinsic inference procedure of LDA. In such a way, the arbitrariness of choosing latent variables'priors for the multi-level graphical model is overcome. Following this data-driven strategy,two concrete methods, Laplacian smoothing and Jelinek-Mercer smoothing, are employed to LDA model. Evaluations on different text categorization collections show data-driven smoothing can significantly improve the performance in balanced and unbalanced corpora.
Resumo:
A novel accurate numerical model for shallow water equations on sphere have been developed by implementing the high order multi-moment constrained finite volume (MCV) method on the icosahedral geodesic grid. High order reconstructions are conducted cell-wisely by making use of the point values as the unknowns distributed within each triangular cell element. The time evolution equations to update the unknowns are derived from a set of constrained conditions for two types of moments, i.e. the point values on the cell boundary edges and the cell-integrated average. The numerical conservation is rigorously guaranteed. in the present model, all unknowns or computational variables are point values and no numerical quadrature is involved, which particularly benefits the computational accuracy and efficiency in handling the spherical geometry, such as coordinate transformation and curved surface. Numerical formulations of third and fourth order accuracy are presented in detail. The proposed numerical model has been validated by widely used benchmark tests and competitive results are obtained. The present numerical framework provides a promising and practical base for further development of atmospheric and oceanic general circulation models. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
基于联络新参数化方案研究了多分量对偶超导模型。给出了多分量Ginzburg-Landau模型中的自对偶解,并研究了磁通量子数趋于无穷大时的墙涡旋解,以及与口袋模型之间的联系。
Resumo:
Inspired by the recent experimental data [J.-G. Wang, et al., Phys. Lett. B 675 (2009) 420], we extend the triaxial projected shell model approach to study the gamma-band structure in odd-mass nuclei. As a first application of the new development, the gamma-vibrational structure of Nb-103 is investigated. It is demonstrated that the model describes the ground-state band and multi-phonon gamma-vibrations quite satisfactorily, supporting the interpretation of the data as one of the few experimentally-known examples of simultaneous occurrence of one- and two-gamma-phonon vibrational bands. This generalizes the well-known concept of the surface gamma-oscillation in deformed nuclei built on the ground-state in even-even systems to gamma-bands based on quasiparticle configurations in odd-mass systems. (c) 2010 Elsevier BM. All rights reserved.
Resumo:
The uniaxial tension experiments on glass-fiber-reinforced epoxy matrix composites reveal that the fragmentations of fibers display vertically aligned fracture, clustered fracture, coordinated fracture, and random fracture with the increase of inter-fiber spacing. The finite element analysis indicates that the fragmentations of fibers displaying different phenomena are due to the stress concentration as well as the inherent randomness of fiber defects, which is the dominant factor. The experimental results show that matrices adjacent to the fiber breakpoints all exhibit birefringent-whitening patterns for the composites with different interfacial adhesion strengths. The larger the extent of the interfacial debonding, the less the domain of the birefringent-whitening patterns. The numerical analysis indicates that the orientation of the matrix adjacent to a fiber breakpoint is caused by the interfacial shear stress, resulting in the birefringent-whitening patterns. The area of shear stress concentrations decides on the domain of the birefringent-whitening patterns.
Resumo:
A multi-plate (NIP) mathematical model was proposed by frontal analysis to evaluate nonlinear chromatographic performance. One of its advantages is that the parameters may be easily calculated from experimental data. Moreover, there is a good correlation between it and the equilibrium-dispersive (E-D) or Thomas models. This shows that it can well accommodate both types of band broadening that is comprised of either diffusion-dominated processes or kinetic sorption processes. The MP model can well describe experimental breakthrough curves that were obtained from membrane affinity chromatography and column reversed-phase liquid chromatography. Furthermore, the coefficients of mass transfer may be calculated according to the relationship between the MP model and the E-D or Thomas models. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A lattice Boltzmann model with 5-bit lattice for traffic flows is proposed. Using the Chapman-Enskog expansion and multi-scale technique, we obtain the higher-order moments of equilibrium distribution function. A simple traffic light problem is simulated by using the present lattice Boltzmann model, and the result agrees well with analytical solution.
Resumo:
Residual stress and its gradient through the thickness are among the most important properties of as-deposited films. Recently, a new mechanism based on a revised Thomas-Fermi-Dirac (TFD) model was proposed for the origin of intrinsic stress in solid film
Resumo:
Spallation in heterogeneous media is a complex, dynamic process. Generally speaking, the spallation process is relevant to multiple scales and the diversity and coupling of physics at different scales present two fundamental difficulties for spallation modeling and simulation. More importantly, these difficulties can be greatly enhanced by the disordered heterogeneity on multi-scales. In this paper, a driven nonlinear threshold model for damage evolution in heterogeneous materials is presented and a trans-scale formulation of damage evolution is obtained. The damage evolution in spallation is analyzed with the formulation. Scaling of the formulation reveals that some dimensionless numbers govern the whole process of deformation and damage evolution. The effects of heterogeneity in terms of Weibull modulus on damage evolution in spallation process are also investigated.
Resumo:
This short communication presents our recent studies to implement numerical simulations for multi-phase flows on top-ranked supercomputer systems with distributed memory architecture. The numerical model is designed so as to make full use of the capacity of the hardware. Satisfactory scalability in terms of both the parallel speed-up rate and the size of the problem has been obtained on two high rank systems with massively parallel processors, the Earth Simulator (Earth simulator research center, Yokohama Kanagawa, Japan) and the TSUBAME (Tokyo Institute of Technology, Tokyo, Japan) supercomputers.
Resumo:
A novel finite volume method has been presented to solve the shallow water equations. In addition to the volume-integrated average (VIA) for each mesh cell, the surface-integrated average (SIA) is also treated as the model variable and is independently predicted. The numerical reconstruction is conducted based on both the VIA and the SIA. Different approaches are used to update VIA and SIA separately. The SIA is updated by a semi-Lagrangian scheme in terms of the Riemann invariants of the shallow water equations, while the VIA is computed by a flux-based finite volume formulation and is thus exactly conserved. Numerical oscillation can be effectively avoided through the use of a non-oscillatory interpolation function. The numerical formulations for both SIA and VIA moments maintain exactly the balance between the fluxes and the source terms. 1D and 2D numerical formulations are validated with numerical experiments. Copyright (c) 2007 John Wiley & Sons, Ltd.