13 resultados para Mot polysémique
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
We report an experiment of trapping of neutral Rb-87 atoms on a, self-made atomchip. The H-shaped atomchip is made by magnetron sputtering technology, which is different from the atomchip technology of other teams. We collect 3 x 10(6) Rb-87 atoms in the mirror magneto-optical trap (MOT) using the external MOT coils, and 1 X 10(5) Rb-87 atoms are transferred to U-MOT using U-shaped wire in chip and a pair of bias coils.
Resumo:
建立了一套用于玻色.爱因斯坦凝聚实验的铷原子双磁光阱装置.从低速强源中获得慢原子柬,向超高真空磁光阱进行原子转移.低速强源磁光阱与超高真空磁光阱之间可维持3个量级的压强差,超高真空磁光阱的真空度最高可达1×10^-9Pa.慢原子束的束流通量达1×10^9/s.约4×10^8个^17Rb原子被装载到超高真空磁光阱中.还讨论了两种典型情况下磁光阱中装载的最大原子数.
Resumo:
以两种吡唑啉衍生物为空穴传输材料(HTM)和BBOT为电子传输材料组成双层器件,获得了相对于组成材料的荧光光谱红移和宽化的电致发光.双层器件和HTM:BBOT等摩尔混蒸薄膜的光致发光及电致发光测量表明,该谱带来自HTM/BBOT界面激基复合物的发射,根据器件的能级图,激基复合物的类型为BBOT的激发态BBOT^
Resumo:
The forming mechanism of the three - dimensional structures of proteins,i.e.the mechanism of protein folding,is a basic problem in molecular biology which is still unsolved unitl now. In which a core problem is whether there is the three – dimensional genetic information that decide the three - dimensional structures of proteins. However, the research on this field has mot yet been reported. Recently,we made a comparative study on the folded structures of more than 70 mature messeneger RNAs (mRNAs) and the three - dimensional structures of the proteins encoded by them,it has been found that there exist marked correspondences between their featured structures in the following aspects: 1.The number of the structural units. An RNA molecule can form a secondary structure(stem and loop structure) by the folding and the base pairing of itself. The elementary structural unit of an RNA secondary structure is hairpin(or compound hair pin).The regular structural unit in the secondary structure of a protein is # alpha # - helix or #beta# - sheet . We have found that the hairpin number in the secondary structure of each mature mRNA is equal or approximately equal to the number of the regular secondary structural unis of the encoded protein. 2 .Turning region. Turn is a main structrual element in the secondary structure of a protein, which decides the backbone orientation of a protein molecule to some extent .Our analysis shows that the nucleotide sequence segments in an mRNA which encode the turns of the corresponding protein are overall situated in the turning regions of the mRNA secondary structure such as haipin,bulge loop or multibaranch loops. 3 .The arrangement of structural elements in space. In order to understand the backbone orientation of an RNA molecule and the arangement of its structural elements in space,we have modeled the three一dimensional structure of the mRNA molecule on SGI workstation based on its secondary structure.The result shows that the spatial arrangement of most of the nucleotide sequence segments encoding the structural elements of a protein is consistent with that of these stretural exements in the protein. For instance,the nucleotide sequences corresponding to each pleated sheet of a # beta # - sheet structure are close to each other in the mRNA secondary stucture and in the three - dimensional structure,although some of the nucleotide segments are far apart from each other in the one - dimensional sequence. For another instance,the two triplet codons of cysteines which form a disulphide bridge geneal1y are very close to each other in the mRNA folded structure. In addition,we also analyzed the locations of the codons proline - coding and the distrbution of the nucleotide sequences #alpha# - helix - coding in the folded structures of mRNAs . Some distribution laws have been found. All of these results suggest that the transfer of the genetic information from mRNA to protein not only is one – dimensional but also is three - dime ns ional. That is,there exists the genetic information that decide the three - dimensional structures of proteins. To a certain extent,we could say that the mRNA folding detemines the protein folding. Based on these results,it would be possible to predict the three - dimensional structures of proteins from the primary,secondary and tertiary structures of the m RNAs at a higher accuracy.And more important is that a new clue has been provided to uncover the“spatial coding" of the genetic information.
Resumo:
本文评叙了分子组装体和纳米结构在固体表面的自组装及其应用,并对控制其自组装过程中的分子间作用力和表面力进行了介绍.采用扫描探针显微学结合电化学的方法对自组装膜(SAMs)、仿生膜(biomimetic mebane),金属和聚合物纳米颗粒(nanoparticles)等分子组装体系进行了研究。主要结果如下:(l)我们研究了2-巯基,-3-烷基唾吩(MOT)在金电极表面的自组装行为。测量了MOT膜的电容,结果表面MOT膜能够选择性的透过溶液中的探针物种。交流阻抗和欠电位沉积研究表明湘T膜的覆盖度达99.9%以上。在硫酸溶液中评价了MOT膜的稳定性,MOT膜的电位窗阳极极限为1.2V。次外,我们还研究了一系列有机小分子在MOT膜上的通透行为,实验结果显示于MOT膜的选择性透过能力最密切相关的是探针分子的溶剂化程度,溶剂化程度约高通过能力越差。我们进一步研究呢MOT膜与表面活性剂的相互作用,发现表面活性剂分子能够在MOT膜表面强烈的吸附,并使MOT膜对电极的封闭作用大大地增强。(2)我们在基于MOT的单组分和电活性多组分的自组膜上进一步构筑了杂化:仿生双层膜,并且研究了双层膜的形成对其中电活性物质的氧化还原反应热力学的影响。跟踪了该双层的形成动力学并研究了其界面属性。得到交叉构象的双层膜.研究了重组其中的HRP的电活性以及磷脂酶A2对该膜的水解动力学。证明我们得到的双层膜比基于烷基硫醇的双层膜有更好的稳定性,而且在仿生膜基础研究和生物传感器应用的有很好的应用前景。(3)我们在MOT和C10SH自组膜上利用表面力,憎水力和电泳力协同作用组装了电活性金纳米粒子。用伏安法跟踪了纳米粒子在界面成膜的过程。用扫描探针显微术对表面得到的纳米结构经行了研究。结果表面这些弱相互作用力协同作用可形成二维纳米结构的表面。(4)我们在单晶Au(111)表面制备了分子导线和长链烷基硫醇的混合自组装膜。以该自组装膜为模板,我们在其表面选择性的生长了聚苯胺纳米结构,这些纳米结构可以作为为阵列电极,而且具有开关特性;同时这些结构为研究分子导线的导电性质提供了一个理想平台。
Resumo:
L/L界面电化学是本世纪七十年代中期发展起来的一门电学学科的新的研究领域。L/L界面上的电化学现象的研究与其它学科领域密切相关,因而越来越引起人们的重视。本论文综述了L/L界面电化学的基本理论和发展概况,然后,在此基础上,对L/L界面电化学研究的新方法,新的溶剂体系,新的转移体系等三个方面进行了系统的研究,主要结果概括如下:一、在新方法研究方面,对广泛使用的四电极L/L界面固定的电解池进行了硅烷化局部改进,解决了操作上的困难,改善了界面的不均匀性,提高了测量准确度和精密度;随后,我们又设计了三种新型悬液电解池,用于本论文的研究和分析工作。这些电解池具有构造简单,体积小,易于制做,界面可调可变,操作便捷,及易改成滴液电极和离子选择性电极等特点,这些电解池与微分脉冲伏安法和方波伏安法联用,提高了分析灵敏度,检限可达10~(-6)mot.dm~(-3)。二、在新溶剂体系的研究中,首次发现了7K/弃硫氰酸丙烯的界面,具有与水/硝基苯界面相比美的界面性能。基础电解质的电位相同。对几种典型离子的研究表明,异硫氰酸为烯可以代替硝基苯用了L/L界面研究。此外,我们采用将不同极性的溶剂相混合的方法,发现了一系列电位较宽,可以用于L/L界面研究的混合溶剂体系,结果表明,对离子转移的Δ_2~W 的主要影响不是溶剂的介电常数,而是溶剂的化学性质。三、在转移体系研究方面,发现了几十种能在L/L界面转移的新的药物体系,为进一步研究和发现更多的新体系在结构上探明了方向。在此基础上,我们采用循环伏安法,循环线性电流扫描计时电位法和微分脉冲伏安法系统地研究了五种胆碱药物离子在L/L界面的转移行为,提出了转移过程的机制为简单离子转移机制。并计算了转移参数;随后,分析了药物结构与转移行为的关系,发现聚脂结构的增加,使药物离子转移的Δ_2~W 和Δ_2~W 迁移;讨论了药物的水解反应对转移过程的影响,研究表明伴有水解反应的拟胆碱药物离子的转移过程为一律有前行化学反应的不可逆离子转移过程。同时,我们还探讨了微分伏安法和方波伏安法用于药物分析的可行性。此外,我们采用循环伏安法研究了麦迪霉素推动质子在L/L界面转移的过程,并以此为依据,建立了L/L界面电分析法检测麦迪霉素的新方法。
Resumo:
Fast analysis of ofloxacin and lidocaine, as bactericide and analgesic or anesthetics, is of clinic importance for understanding the patient's medical process. This paper presented a high throughput, simple analysis method of lidocaine and ofloxacin by capillary electrophoresis coupled with electrochemiluminescence (ECL) using porous etched joint. To shorten the analysis time and to improve the analytical performance, a capillary with 10 cm in length was used as the separation channel. The cyclic voltammograms of Ru(bpy)(3)(2+) with different capillary length at same field strength showed that the porous etched joint eliminated the effect of electrophoretic current on the ECL detection. Following micro total analysis systems (muTAS), some advantages of which this approach has, the fabrication of channel in chip was not needed. Compared with capillary electrophoresis with 40-cm-long capillary, the high sample throughput and low zone broadening may be the main advantage of the present system. Under optimal condition, the detection limits of lidocaine and ofloxacin based on peak height were 3.0 x 10(-8) and 5.0 x 10(-7) mot L-1 and a 60 h(-1) of sampling frequency was obtained.
Resumo:
The immobilization of surface-derivatized gold nanoparticles onto methyl-terminated self-assembled monolayers (SAMs) on gold surface was achieved by the cooperation of hydrophobic and electrophoretic forces. Electrochemical and scanning probe microscopy techniques were utilized to explore the influence of the SAM's structure and properties of the nanoparticle/SAM/gold system. SAMs prepared from 1-decanethiol (DT) and 2-mercapto-3-n-octylthiophene (MOT) were used as hydrophobic substrates. The DT SAM is a closely packed and organized monolayer, which can effectively block the underlying gold and inhibit a variety of solution species including organic and inorganic molecules from penetrating, whereas the MOT monolayer is poorly packed or disorganized (because of a large difference in dimension between the thiophene head and the alkylchain tail) and permeable to many organic probes in aqueous solution but not to inorganic probes. Thus, the MOT monolayer provides a more energetically favorable hydrophobic surface for the penetration and adsorption of organic species than the DT monolayer.
Resumo:
An inherently disorganized self-assembled monolayer (SAM) of 2-mercapto-3-n-octylthiophene (MOT) has been formed on a gold bead electrode from its dilute ethanolic solution. The disorganization of the monolayer is attributed to the loose packing of the aliphatic chains of the MOT adsorbates, which results from a large difference in dimension/or cross-sectional area between the head (thiophene thiolate) and the tail (alkane chain) groups. Electrochemical measurements including ac impedance spectroscopy and metal underpotential deposition have shown that the monolayer is almost pinhole free. However, the MOT SAM can be penetrated by an organic probe molecule with affinity for the alkane chain part of the monolayer. Some typical probe molecules with different size and hydrophilicity have been employed to assess the permselectivity of the monolayer. Measurement results demonstrate that the ability of the employed probe molecules to penetrate into the monoalyer is mainly dominated by their hydrophilicity/or hydrophobicity. The results presented here suggest the potential application of MOT monoalyer to effectively modify the electrode surface for several research areas such as electrochemical sensors, electrocatalysis, electroanalysis, and supported hybrid bilayer membranes.
Resumo:
Stable colloidal solutions of gold nanoparticles surface-derivatized with a thiol monolayer have been prepared using two-phase (water-nitrobenzene) reduction of AuCl4- by sodium borohydride in the presence of 2-mercapto-3-n-octylthiophene (MOT). This kind of surface-functionalized gold nanoparticles can be easily incorporated into the poly(3-octylthiophene) (POT) films on electrode in the process of electrochemical polymerization leading to POT-gold nanoparticle (POT-Au) composite films. Scanning probe microscopy (SPM) and X-ray photoelectric spectroscopy (XPS) have been employed to characterize the surface-derivatized particles and the resulting films. The method of incorporation of nanoparticles into polymer by surface-derivatization and in situ polymerization can also be employed to prepare many other polymer-nanoparticle compostie materials.
Resumo:
Adsorption of a monolayer of didecanoyl-L-alpha-phosphatidylcholine (DDPC) from dispersions of small unilamellar vesicles onto hydrophobic surfaces was investigated by mean of cyclic voltammetry and impedance spectroscopy. The hydrophobic surfaces were self-assembled monolayers of 2-mereapto-3-n-octylthiophene (MOT) on gold. One characteristic of the MOT monolayer is its permeability to organic molecules in aqueous solution, thus providing a more energetically favorable hydrophobic surface for the addition of phospholipid vesicles. The kinetics of the lipid monolayer formation were followed by measuring the time-dependent interfacial capacitance. Unusual values of thickness and capacitance of the MOT/ DDPC bilayers were observed. An interdigitating conformation of the bilayer structure was proposed to interpret the experimental results, The horseradish peroxidase reconstituted into the bilayer demonstrated the expected protein activity, showing practical use in research and in biosensor application.
Resumo:
Monolayer assembly of 2-mercapto-3-n-octylthiophene (MOT) having a relatively large headgroup onto gold surface from its dilute ethanolic solutions has been investigated by electrochemistry. An electrochemical capacitance measurement on the permeability of the monolayer to aqueous ions, as compared with its alkanethiol counterpart [CH3(CH2)(9)SH (DT)] with a similar molecular length, shows that the self-assembled monolayers (SAMs) of MOT can be penetrated by aqueous ions to some extent. Furthermore, organic molecular probes, such as dopamine, can sufficiently diffuse into the monolayer because a diffusion-limited current peak is observed when the dopamine oxidation reaction takes place, showing that the monolayer is loosely packed or dominated by defects. But the results of electron transfer to aqueous redox probes (including voltammetry in Fe(CN)(6)(3-/4-) solutions and electrochemical ac impedance spectrum) confirm that the monolayer can passivate the gold electrode surface effectively for its very low ratio of pinhole defects. Moreover, a heterogeneous patching process involving addition of the surfactants into the SAMs provides a mixed or hybrid membrane that has superior passivating properties. These studies show that the MOT monolayer on the electrode can provide an excellent barrier for hydrated ionic probe penetration but cannot resist the organic species penetration effectively. The unusual properties of the SAMs are attributed to the entity of the relatively large thiophene moiety between the carbon chain and the thiol group.
Resumo:
The relationship between working memory (WM) and attention has attracted many researchers. In his embedded-processes model of WM, Cowan (1999, 2001) uses the term focus of attention to refer to the core component of WM, and proposes that the focus of attention of WM and that of perception have the same span, which is a fixed number. This hypothesis about the scope of attention has seldom been tested, although considerable studies have revealed that WM and attention have overlapping mechanisms. The present dissertation tests this hypothesis by examining the dual-task interference between Corsi Blocks Task (CBT) and Mutilple Object Tracking (MOT) and the findings demenstrate that Cowan’s hypothesis is not exactly true. The results of our first study show that the interference effect of MOT on CBT is a reliable indicator of whether and to which extent the attentional resoureces of WM and perception overlap. In the second study we find that the capacity of the common resources is not a fixed number but varies with the difficulty of control of attention. And the third study indicates that attentional resources used in WM and perception are partly independent, the overlapping part can attend to only one or two items or locations at a time. These findings can contribute to future studies on the capacity limitation of different cognitive functions, and to the development of relevant ability tests.