24 resultados para Mixed-Integer Programming
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
针对一类存在并行和可重入腔的复杂单臂机器人集束型装备的调度问题,通过对加工腔、机器人、并行和可重入腔中的各个机器人活动进行分析,推导出对应的时序约束关系,建立了问题的混合整数规划模型,从而获得最优的机器人动作序列和最小周期.调度实例表明了模型的可行性和高效性。
Resumo:
针对多品种批量生产类型,建立了调度约束的生产计划与调度集成优化模型。模型的目标函数是使总调整费用、库存费用及生产费用之和最小,约束函数包括库存平衡约束和生产能力约束,同时考虑了调度约束,即工序顺序约束和工件在单机上的加工能力约束,保证了计划可行性。该模型为两层混合整数规划模型,对其求解综合运用了遗传算法和启发式规则,提出了混合启发式求解算法。最后,针对某机床厂多品种批量生产类型车间进行了实例应用,对车间零件月份作业计划进行分解,得到各工段单元零件周作业计划,确定了零件各周生产批量与投产顺序。
Resumo:
标准约束优化问题的等式或不等式约束之间是逻辑“与”关系,目前已经有很多高效、收敛的优化算法.但是,在实际应用中有很多更一般的约束优化问题,其等式或不等式约束之间不仅包含逻辑“与”关系,而且还包含逻辑“或”关系,现有的针对标准约束优化问题的各种算法不再适用,给出一种新的数学变换方法,把具有逻辑“或”关系的不等式约束转换为一组具有逻辑“与”关系的不等式,并应用到实时单调速率调度算法的可调度性判定充要条件中,把实时系统设计表示成混合布尔型整数规划问题,利用经典的分支定界法求解.实验部分指出了各种方法的优缺点.
Resumo:
建立了极大极小任务分配问题的混合整数线性规划模型,提出一种矩阵作业解答,并与穷举解及混合整数线性规划解的计算复杂度进行了比较.理论分析和数值试验表明矩阵作业法对两类任务分配问题,极大极小和总体极小任务分配问题,有效地提供最优解.
Resumo:
研究多车辆多目标追逐的路径规划问题。提出两个基于混合整数线性规划(Mixed integer linear programming,MILP)的多目标追逐(Multi-target pursuit,MTP)模型:就近追逐和"一对一"使能追逐。在两个MIP追逐模型中,小车运动的状态方程考虑为具有线性阻尼的质点动力学方程。采用整数变量描述小车与障碍物的相对位置信息,提出"目标膨胀尺寸"的概念来描述对目标的追逐,定义小车的"追逐方向"。采用选取整变量的等高面法求解MILP追逐问题,并给出初始内点整变量的确定方法。最后给出仿真试验1对两个多目标追逐模型进行对比研究,仿真试验2证实了算法的效率。
Resumo:
该文构造了一个背包型公钥密码算法。该背包公钥密码具有如下优点:加解密只需要加法和模减法运算,因此加解密速度快;该算法是基于随机背包问题而不是易解背包问题而构造的;证明了在攻击者不掌握私钥信息情况下该密码算法能抵抗直接求解背包问题的攻击,包括低密度攻击和联立丢番图逼近攻击等;证明了攻击者能够恢复私钥信息与攻击者能够分解一个大整数是等价的。分析表明,该算法是一个安全高效的公钥加密算法。
Resumo:
One kind of surface modification method on silicon wafer was presented in this paper. A mixed silanes layer was used to modify silicon surface and rendered the surface medium hydrophobic. The mixed silanes layer contained two kinds of compounds, aminopropyltriethoxysilane (APTES) and methyltriethoxysilane (NITES). A few of APTES molecules in the layer was used to immobilize covalently human immunoglobulin G (IgG) on the silicon surface. The human IgG molecules immobilized covalently on the modified surface could retain their structures well and bind more antibody molecules than that on silicon surface modified with only APTES. This kind of surface modification method effectively improved the sensitivity of the biosensor with imaging ellipsometry.
Resumo:
An immunosensor interface based on mixed hydrophobic self-assembled monolayers (SAMs) of methyl and carboxylic acid terminated thiols with covalently attached human Immunoglobulin G (hIgG), is investigated. The densely packed and organised SAMs were characterised by contact angle measurements and cyclic voltammetry. The effect of the non-ionic surfactant, Tween 20, in preventing nonspecific adsorption is addressed by ellipsometry during physical and covalent hIgG immobilization on pure and mixed SAMs, respectively. It is clearly demonstrated that nonspecific adsorption due to hydrophobic interactions of hIgG on methyl ended groups is totally inhibited, whereas electrostatic/hydrogen bonding interactions with the exposed carboxylic groups prevail in the presence of surfactant. Results of ellipsometry and Atomic Force Microscopy, reveal that the surface concentration of covalently immobilized hIgG is determined by the ratio of COOH/CH3-terminated thiols in SAM forming solution. Moreover, the ellipsometric data demonstrates that the ratio of bound anti-hIgG/hIgG depends on the density of hIgG on the surface and that the highest ratio is close to three. We also report the selectivity and high sensitivity achieved by chronoamperometry in the detection of adsorbed hIgG and the reaction with its antibody.
Resumo:
Based on the sub-region generalized variational principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method.
Resumo:
In the present paper, by use of the boundary integral equation method and the techniques of Green fundamental solution and singularity analysis, the dynamic infinite plane crack problem is investigated. For the first time, the problem is reduced to solving a system of mixed-typed integral equations in Laplace transform domain. The equations consist of ordinary boundary integral equations along the outer boundary and Cauchy singular integral equations along the crack line. The equations obtained are strictly proved to be equivalent with the dual integral equations obtained by Sih in the special case of dynamic Griffith crack problem. The mixed-type integral equations can be solved by combining the numerical method of singular integral equation with the ordinary boundary element method. Further use the numerical method for Laplace transform, several typical examples are calculated and their dynamic stress intensity factors are obtained. The results show that the method proposed is successful and can be used to solve more complicated problems.
Resumo:
The growth behaviour of zero-mean-shear turbulent-mixed layer containing suspended solid particles has been studied experimentally and analysed theoretically in a two-layer fluid system. The potential model for estimating the turbulent entrainment rate of the mixed layer has also been suggested, including the results of the turbulent entrainment for pure two-layer fluid. The experimental results show that the entrainment behaviour of a mixed layer with the suspended particles is well described by the model. The relationship between the entrainment distance and the time, and the variation of the dimensionless entrainment rate E with the local Richardson number Ri1 for the suspended particles differ from that for the pure two-layer fluid by the factors-eta-1/5 and eta-1, respectively, where eta = 1 + sigma-0-DELTA-rho/DELTA-rho-0.
Resumo:
The prediction of cracking direction in composite materials is of significance to the design of composite structures. This paper presents several methods for predicting the cracking direction in the double grooved tension-shear specimen which gives mixed-mode cracking. Five different criteria are used in this analysis: two of them have been used by other investigators and the others are proposed by the present authors. The strain energy density criterion proposed by G.C. Sih is modified to take account of the influence of the anisotropy of the strength on the direction of crack. The two failure criteria of Tsai-Hill and Norris are extended to predict the crack orientation. The stress distributions in the near-notch zone are calculated by using the 8-node quadrilateral isoparametric finite element method. The predictions of all the criteria except one are in good agreement with the experimental measurement. In addition, on the basis of the FEM results, the size of the zone in which the singular term is dominant is estimated.
Resumo:
boundary-layer flows, the skin friction and wall heat-transfer are higher and the
Resumo:
thermal conduction, and acoustic wave propagation are included. This