191 resultados para Mineralogical composition
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In this study, we examined the surface features of quartz grains, the quartz oxygen isotopic ratios and the mineralogical compositions of the loess - paleosol - red clay sediments systematically. The surface features of quartz grains do not show significant changes of the dust deposits through the past seven million years. The particles were mainly created in the process of glacial and frost weathering of high mountains. Then the surfaces were altered in some degree by the flood and wind abrasion. The surface features registered all these processes. The assemblages of surface features changed for four times in the past seven million years, the occurrence ages are: 5.0~4.2MaBP, about 3.6MaBP, about 2.6MaBP and about 0.9MaBP, respectively. This may indicate that there were uplift events of the Tibetan Plateau during those times. The oxygen isotopic compositions of quartz in the sediments represent the oxygen isotopic compositions of the initial dusts because of the stable properties of quartz both physically and chemically. The oxygen isotopic compositions of 4~16um quartz changed significantly at about 2.6MaBP, decreasing from about 19.5%o to about 18.5%o. This decrease of quartz oxygen isotopic ratio suggests that the environments of the dust source areas changed at that time, or the range of dust source area changed at that time. The environmental change may result from the structural evolution of the Tibetan Plateau and global cooling at that time. The coarse fractions (>30μm) of the dust deposits were examined using the EDXA device for mineral identification. The quartz content has a decrease trend during 7~2MaBP, then increase rapidly at about 2MaBP. After 2MaBP, quartz content continues to decrease. The Ca-plagioclase content / quartz content ratio increase at about 3.6MaBP. The ratio shows a peak of 3-6 fold values at about 2.5~1.8MaBP, the cause of this is still unknown. The Ca-plagioclase content / quartz content ratio continues to increase after 1 MaBP. The flowing can be regarded as the conclusion remarks of this study: Some of the red clay sediment of the Chinese Loess Plateau (at least Lingtai and Jingchuan red clays) is eolian in origin. The quartz grains from dust deposits throughout the past seven million yeas showed the clues of glacial and frost processes. This indicates that the high mountains of western China reached a certain altitude to favor the glacial and/or frost processes at least seven millions years before. The weathering intensities of the past seven nnillion yeas have a decreasing trend. In about 5~4.5MaBP, the weathering is relatively weak, and the dust supply is relatively low. At about 3.6MaBP and 2.6MaBP, the dust supply increased significantly. The mineralogical composition, the quartz surface feature and the quartz oxygen isotope composition were influenced by the uplift of the Tibetan Plateau. The Plateau may have reached a certain altitude to generate the arid regions of inland China and favor the glacial and frost weathering. And it underwent a phased uplift, which have uplift events at about 3.6MaBP and 2.6MaBP.
Resumo:
The mineralogical and geochemical characteristics of Fe-oxyhydroxide samples from one dredge station (long. 103 degrees 54.48'W, lat. 12 degrees 42.30'N, water depth 2655 m) on the East Pacific Rise near lat 13 degrees N were analyzed by XRD, ICP-AES, and ICP-MS. Most Fe-oxyhydroxides are amorphous, with a few sphalerite microlites. In comparison with Fe-oxyhydroxides from other fields, the variable ranges in the chemical composition of Fe-oxyhydroxide samples are very narrow; their Fe, Si, and Mn contents were 39.90%, 8.92%, and 1.59%, respectively; they have high Cu (0.88%-1.85%) and Co (65x10(-6)-704x10(-6)) contents, and contain Co+Cu+Zn+Ni > 1.01%. The trace-element (As, Co, Ni, Cu, Zn, Ba, Sr) and major-element (Fe, Ca, Al, Mg) contents of these samples are in the range of hydrothermal sulfide from the East Pacific Rise near 13 degrees N, reflecting that this type of Fe-oxyhydroxide constitutes a secondary oxidation product of hydrothermal sulfide. The Fe-oxyhydroxide samples from one dredge station on the East Pacific Rise near 13 degrees N are lower in Sigma REE (5.44x10(-6)-17.01x10(-6)), with a distinct negative Ce anomaly (0.12-0.28). The Fe-oxyhydroxide samples have similar chondrite-normalized rare-earth-element (REE) patterns to that of seawater, and they are very different from the REE composition characteristics of hydrothermal plume particles and hydrothermal fluids, showing that the REEs of Fe-oxyhydroxide are a major constituent of seawater and that the Fe-oxyhydroxides can become a sink of REE from seawater. The quick settling of hydrothermal plume particles resulted in the lower REE content and higher Mn content of these Fe-oxyhydroxides, which are captured in part of the V and P from seawater by adsorption. The Fe-oxyhydroxides from one dredge station on the East Pacific Rise near 13 degrees N were formed by secondary oxidation in a low temperature, oxygenated environment. In comparison with the elemental (Zn, Cd, Pb, Fe, Co, Cu) average content of hydrothermal sulfide samples from the East Pacific Rise near 13 degrees N, the Zn, Cd, and Pb contents of the Fe-oxyhydroxides are lower, and their Fe, Co, and Cu contents are higher.
Resumo:
This paper presents models to describe the dislocation dynamics of strain relaxation in an epitaxial uniform layer, epitaxial multilayers and graded composition buffers. A set of new evolution equations for nucleation rate and annihilation rate of threading dislocations is developed. The dislocation interactions are incorporated into the kinetics process by introducing a resistance term, which depends only on plastic strain. Both threading dislocation nucleation and threading dislocation annihilation are characterized. The new evolution equations combined with other evolution equations for the plastic strain rate, the mean velocity and the dislocation density rate of the threading dislocations are tested on GexSi1-x/Si(100) heterostructures, including epitaxial multilayers and graded composition buffers. It is shown that the evolution equations successfully predict a wide range of experimental results of strain relaxation and threading dislocation evolution in the materials system. Meanwhile, the simulation results clearly signify that the threading dislocation annihilation plays a vital role in the reduction of threading dislocation density.
Resumo:
Multi-track laser cladding is now applied commercially in a range of industries such as automotive, mining and aerospace due to its diversified potential for material processing. The knowledge of temperature, velocity and composition distribution history is essential for a better understanding of the process and subsequent microstructure evolution and properties. Numerical simulation not only helps to understand the complex physical phenomena and underlying principles involved in this process, but it can also be used in the process prediction and system control. The double-track coaxial laser cladding with H13 tool steel powder injection is simulated using a comprehensive three-dimensional model, based on the mass, momentum, energy conservation and solute transport equation. Some important physical phenomena, such as heat transfer, phase changes, mass addition and fluid flow, are taken into account in the calculation. The physical properties for a mixture of solid and liquid phase are defined by treating it as a continuum media. The velocity of the laser beam during the transition between two tracks is considered. The evolution of temperature and composition of different monitoring locations is simulated.
Resumo:
Optical spectroscopic properties of Er3+-doped alkaline-earth metal modified fluoropho sphate glasses have been investigated experimentally for developing broadband fiber and planar amplifiers. The results show a strong correlation between the alkaline-earth metal content and the spectroscopic parameters such as absorption and emission cross sections, full widths at half-maximum and Judd-Ofelt intensity parameters. It is found that strontium ions could have more influences on the Judd-Ofelt intensity parameters and the absorption and emission cross sections than other alkaline-earth metal ions such as Mg2+, Ca2+, Ba2+. The sample containing 23 mol% strontium fluoride exhibits the maximum emission cross section of 7.58 x 10(-21) cm(2), the broadest full width at half-maximum of 65 nm and the longer lifetime of 8.6 ms among the alkaline-earth metal modified fluorophosphates glasses studied. The Judd-Ofelt intensity parameter Omega(6)s, the emission cross sections and the full widths at half-maximum in the Er3+-doped fluorophosphate glasses studied are larger than in the silicate and phosphate glasses.
Resumo:
Er3+ -doped oxychloride germanate glasses have been synthesized by conventional melting and quenching method. Structural and thermal stability properties were obtained based on the Raman spectra and differential thermal analysis, indicating that PbCl2 plays an important role in the formation of glass network and has an important influence on the maximum phonon energy and thermal stability of host glasses. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. With increasing PbCl2 content, the intensity of green (525 and 546 nm) emissions increases significantly, while the red (657 nm) emission increases slowly. The results indicate that PbCl2 has more influence on the green emissions than the red emission in oxychloride germanate glasses. The possible upconversion luminescence mechanisms has also been estimated and discussed. (c) 2005 Elsevier Ltd. All rights reserved.