Formation of Fe-oxyhydroxides from the East Pacific Rise near latitude 13 degrees N: Evidence from mineralogical and geochemical data
Data(s) |
01/02/2008
|
---|---|
Resumo |
The mineralogical and geochemical characteristics of Fe-oxyhydroxide samples from one dredge station (long. 103 degrees 54.48'W, lat. 12 degrees 42.30'N, water depth 2655 m) on the East Pacific Rise near lat 13 degrees N were analyzed by XRD, ICP-AES, and ICP-MS. Most Fe-oxyhydroxides are amorphous, with a few sphalerite microlites. In comparison with Fe-oxyhydroxides from other fields, the variable ranges in the chemical composition of Fe-oxyhydroxide samples are very narrow; their Fe, Si, and Mn contents were 39.90%, 8.92%, and 1.59%, respectively; they have high Cu (0.88%-1.85%) and Co (65x10(-6)-704x10(-6)) contents, and contain Co+Cu+Zn+Ni > 1.01%. The trace-element (As, Co, Ni, Cu, Zn, Ba, Sr) and major-element (Fe, Ca, Al, Mg) contents of these samples are in the range of hydrothermal sulfide from the East Pacific Rise near 13 degrees N, reflecting that this type of Fe-oxyhydroxide constitutes a secondary oxidation product of hydrothermal sulfide. The Fe-oxyhydroxide samples from one dredge station on the East Pacific Rise near 13 degrees N are lower in Sigma REE (5.44x10(-6)-17.01x10(-6)), with a distinct negative Ce anomaly (0.12-0.28). The Fe-oxyhydroxide samples have similar chondrite-normalized rare-earth-element (REE) patterns to that of seawater, and they are very different from the REE composition characteristics of hydrothermal plume particles and hydrothermal fluids, showing that the REEs of Fe-oxyhydroxide are a major constituent of seawater and that the Fe-oxyhydroxides can become a sink of REE from seawater. The quick settling of hydrothermal plume particles resulted in the lower REE content and higher Mn content of these Fe-oxyhydroxides, which are captured in part of the V and P from seawater by adsorption. The Fe-oxyhydroxides from one dredge station on the East Pacific Rise near 13 degrees N were formed by secondary oxidation in a low temperature, oxygenated environment. In comparison with the elemental (Zn, Cd, Pb, Fe, Co, Cu) average content of hydrothermal sulfide samples from the East Pacific Rise near 13 degrees N, the Zn, Cd, and Pb contents of the Fe-oxyhydroxides are lower, and their Fe, Co, and Cu contents are higher. The mineralogical and geochemical characteristics of Fe-oxyhydroxide samples from one dredge station (long. 103 degrees 54.48'W, lat. 12 degrees 42.30'N, water depth 2655 m) on the East Pacific Rise near lat 13 degrees N were analyzed by XRD, ICP-AES, and ICP-MS. Most Fe-oxyhydroxides are amorphous, with a few sphalerite microlites. In comparison with Fe-oxyhydroxides from other fields, the variable ranges in the chemical composition of Fe-oxyhydroxide samples are very narrow; their Fe, Si, and Mn contents were 39.90%, 8.92%, and 1.59%, respectively; they have high Cu (0.88%-1.85%) and Co (65x10(-6)-704x10(-6)) contents, and contain Co+Cu+Zn+Ni > 1.01%. The trace-element (As, Co, Ni, Cu, Zn, Ba, Sr) and major-element (Fe, Ca, Al, Mg) contents of these samples are in the range of hydrothermal sulfide from the East Pacific Rise near 13 degrees N, reflecting that this type of Fe-oxyhydroxide constitutes a secondary oxidation product of hydrothermal sulfide. The Fe-oxyhydroxide samples from one dredge station on the East Pacific Rise near 13 degrees N are lower in Sigma REE (5.44x10(-6)-17.01x10(-6)), with a distinct negative Ce anomaly (0.12-0.28). The Fe-oxyhydroxide samples have similar chondrite-normalized rare-earth-element (REE) patterns to that of seawater, and they are very different from the REE composition characteristics of hydrothermal plume particles and hydrothermal fluids, showing that the REEs of Fe-oxyhydroxide are a major constituent of seawater and that the Fe-oxyhydroxides can become a sink of REE from seawater. The quick settling of hydrothermal plume particles resulted in the lower REE content and higher Mn content of these Fe-oxyhydroxides, which are captured in part of the V and P from seawater by adsorption. The Fe-oxyhydroxides from one dredge station on the East Pacific Rise near 13 degrees N were formed by secondary oxidation in a low temperature, oxygenated environment. In comparison with the elemental (Zn, Cd, Pb, Fe, Co, Cu) average content of hydrothermal sulfide samples from the East Pacific Rise near 13 degrees N, the Zn, Cd, and Pb contents of the Fe-oxyhydroxides are lower, and their Fe, Co, and Cu contents are higher. |
Identificador | |
Idioma(s) |
英语 |
Fonte |
Zeng ZhiGang; Wang XiaoYuan; Zhang GuoLiang; Yin Xuebo; Chen DaiGeng; Wang XiaoMei.Formation of Fe-oxyhydroxides from the East Pacific Rise near latitude 13 degrees N: Evidence from mineralogical and geochemical data,SCIENCE IN CHINA SERIES D-EARTH SCIENCES,2008,51(2):206-215 |
Palavras-Chave | #Geosciences, Multidisciplinary #mineral #geochemistry #formation #Fe-oxyhydroxide #East Pacific Rise 13 degrees N |
Tipo |
期刊论文 |