5 resultados para Medical applications
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A label-free protein microfluidic array for immunoassays based on the combination of imaging ellipsometry and an integrated microfluidic system is presented. Proteins can be patterned homogeneously on substrate in array format by the microfluidic system simultaneously. After preparation, the protein array can be packed in the microfluidic system which is full of buffer so that proteins are not exposed to denaturing conditions. With simple microfluidic channel junction, the protein microfluidic array can be used in serial or parallel format to analyze single or multiple samples simultaneously. Imaging ellipsometry is used for the protein array reading with a label-free format. The biological and medical applications of the label-free protein microfluidic array are demonstrated by screening for antibody–antigen interactions, measuring the concentration of the protein solution and detecting five markers of hepatitis B.
Resumo:
Covalent surface functionalization of carbon nanotubes with polypeptides is promising for possible medical applications. This work presents a graft-from approach to perform the polypeptide modification of multiwalled carbon nanotubes (MWTNs). The raw MWNTs are first amine-functionalized. The amine-functionalized MWNTs are then used as the initiator to initiate the ring-opening polymerization of gamma-benzyl-L-glutamate N-carboxyanhydride (BLG- NCA), to results in the polypeptide-grafted MWNTs. FT-IR, XPS, and TGA data demonstrate that the functionalization is successful. The TEM images of the products show that the thickness of the polypeptide shell of the PBLG-MWNT is about 4.5-22 nm. Using the facile route developed here, carbon nanotubes functionalized with other types of polypeptides can be easily fabricated using the corresponding NCAs.
Resumo:
A series of polylactide polyurethanes (PLAUs) were synthesized from poly(L-lactide) diols, hexamethylene diisocyanate (HDI), and 1,4-butanediol (BDO). Their thermal and mechanical properties and shape-memory behavior were studied by infrared spectroscopy (IR), differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXID), tensile testing, and thermal mechanical analysis (TMA). The T(g)s of these polymers were in the range of 33-53 degrees C, and influenced by the Mn of the PLA diol and the ratio of the soft-segment to the hard-segment. These materials can restore their shapes almost completely after 150% elongation or twofold compression. By changing the M-n of the PLA diol and the ratio of the hard-to-soft-segment, their Ts and shape-recovery temperatures can be adjusted to the neighborhood of the body temperature. Therefore, these PLAUs are expected to find practical medical applications.
Resumo:
A prototype microsystem is presented for wireless neural recording application. An inductive link was built for transcutaneous wireless power transfer and data transmission. Total 16.5 mW power and 50 bps - 2.5 Kbps command data can be received over 1 - 5 MHz with a distance of 0-10 mm. The integrated amplifiers were designed with a limited bandwidth for neural signals acquisition. The gain of 60 dB was obtained by preamplifier at 7 Hz - 3 KHz. An integrated FM transmitter was used to transmit the extracted neural signals to external equipments with 0.374 - 2 mW power comsumption and a maximum data rate of 500 Kbps at 100 MHz. All the integrated circuits modules except the power recovery circuit were tested or stimulated under a 3.3 V power supply, and fabricated in standard CMOS processing.