4 resultados para Mathieu, Funções de
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
本文针对四边固定载流矩形薄板,利用Mathieu方程解的稳定性,研究其在电磁场与机械荷载共同作用下的磁弹性稳定性问题。首先在载流薄板的磁弹性非线性运动方程、物理方程、几何方程、洛仑兹力表达式及电动力学方程的基础上,导出了载流薄板在电磁场与机械荷载共同作用下的磁弹性动力稳定方程,然后应用Galerkin方法将稳定方程整理为Mathieu方程的标准形式,并将薄板的动力稳定性问题归结为对Mathieu方程的求解。利用Mathieu方程的稳定解区域与非稳定解区域的分界,即方程系数λ和η的本征值关系,得出了磁弹性问题失稳临界状态的判别方程。通过具体算例,给出了四边固定载流矩形薄板的磁弹性动力失稳临界状态与相关参量之间的关系曲线,并对计算结果及其变化规律进行了分析讨论。
Resumo:
在载流薄板的磁弹性非线性运动方程、物理方程、几何方程、洛仑兹力表达式及电动力学方程的基础上,导出四边简支载流矩形薄板在电磁场与机械载荷共同作用下的磁弹性动力屈曲方程。应用Galerkin原理将该屈曲方程整理为Mathieu方程的标准形式,并利用Mathieu方程解的稳定区域与非稳定区域的分界,即方程系数的本征值关系,得出磁弹性问题屈曲临界状态的判别方程。通过具体算例,给出四边简支矩形板的磁弹性动力屈曲方程以及屈曲临界状态与相关参量之间的关系曲线,并对计算结果及其变化规律进行分析讨论。
Resumo:
The nonlinear dynamic responses of the tensioned tether subjected to combined surge and heave motions of floating platform are investigated using 2-D nonlinear beam model. It is shown that if the transverse-axial coupling of nonlinear beam model and the combined surge-heave motions of platform are considered, the governing equation is not Mathieu equation any more, it becomes nonlinear Hill equation. The Hill stability chart is obtained by using the Hill's infinite determinant and harmonic balance method. A parameter M, which is the function of tether length, the surge and heave amplitude of platform, is defined. The Hill stability chart is obviously different from Mathieu stability chart which is the specific case as M=0. Some case studies are performed by employing linear and nonlinear beam model respectively. It can be found that the results differences between nonlinear and linear model are apparent.
Resumo:
There is extensive agreement that attention may play a role in spatial stimmlus coding (Lu & Proctor, 1995). Some authors investigated the effects of spatial attention on the spatial coding by using spatial cueing procedure and spatial Stroop task. The finding was that the stroop effects were modulated by spatial cueing. Three hypotheses including attentional shift account, referential coding account, and event integration account were used to explain the modulation of spatial cueing over the spatial Stroop effects. In these previous studies, on validly cued trials, cue and target not only appeared at the same location, but also in the same object, which resulted in both location and object cued. Consequently, the modulation of spatial attentional cueing over spatial Stroop effects was confounded with the role of object-based attention. In the third chapter of this dissertation, using a modification of double rectangles cueing procedure developed by Egly, Driver and Rafal (1994) and spatial Stroop task employed by Lupiáñez and Funes (2005), separate effects of spatial attention and object-based attention on the location code of visual stimuli were investigated. Across four experiments, the combined results showed that spatial Stroop effects were modulate by object-based attention, but not by location-based attention. This pattern of results could be well explained by event integration account, but not by attentional shift account and referential coding account. In the fourth chapter, on the basis of the prior chapter, whether the modulation of attentional cueing on location code occurred at the stage of perceptual identification or response choice was investigated. The findings were that object-based attention modulated spatial Stroop effects and did not modulate the Simon effects, whereas spatial attention did not modulate Stroop and Simon effects. This pattern of results partially replicated the outcome of the previous chapter. The previous studies generally argued that the conflicts of spatial Stroop task and Simon task respectively occurred at at the stage of perceptual identification and response choice. Therefore, it is likely to conclude that the modulation of attention over spatial Stroop effect was mediated by object-based attention, and this modulation occurred at the stage perceptual identification. Considering that the previous studies mostly investigated the effects of attention captured by abrupt onset on the spatial Stroop effects, few studies investigated the effects of attention captured by offset cue on the spatial Stroop effects. The aim of the fifth chapter was to investigate the role of attention induced by offset and abrupt onset cue in the spatial Stroop task. These results showed that attention elicited by offset cue or abrupt onset cue modulated the spatial Stroop effects, which reconciled with event integration account.