147 resultados para MOS devices
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A nondestructive selection technique for predicting ionizing radiation effects of commercial metal-oxide-semiconductor (MOS) devices has been put forward. The basic principle and application details of this technique have been discussed. Practical application for the 54HC04 and 54HC08 circuits has shown that the predicted radiation-sensitive parameters such as threshold voltage, static power supply current and radiation failure total dose are consistent with the experimental results obtained only by measuring original electrical parameters. It is important and necessary to choose suitable information parameters. This novel technique can be used for initial radiation selection of some commercial MOS devices.
Resumo:
This paper proposes a novel phase-locked loop (PLL) frequency synthesizer using single-electron devices (SEDs) and metal-oxide-semiconductor (MOS) field-effect transistors. The PLL frequency synthesizer mainly consists of a single-electron transistor (SET)/MOS hybrid voltage-controlled oscillator circuit, a single-electron (SE) turnstile/MOS hybrid phase-frequency detector (PFD) circuit and a SE turnstile/MOS hybrid frequency divider. The phase-frequency detection and frequency-division functions are realized by manipulating the single electrons. We propose a SPICE model to describe the behavior of the MOSFET-based SE turnstile. The authors simulate the performance of the PILL block circuits and the whole PLL synthesizer. Simulation results indicated that the circuit can well perform the operation of the PLL frequency synthesizer at room temperature. The PILL synthesizer is very compact. The total number of the transistors is less than 50. The power dissipation of the proposed PLL circuit is less than 3 uW. The authors discuss the effect of fabrication tolerance, the effect of background charge and the SE transfer accuracy on the performance of the PLL circuit. A technique to compensate parameter dispersions of SEDs is proposed.
Resumo:
Silicon carbide (SiC) is recently receiving increased attention due to its unique electrical and thermal properties. It has been regarded as the most appropriate semiconductor material for high power, high frequency, high temperature, and radiation hard microelectronic devices. The fabrication processes and characterization of basic device on 6H-SiC were systematically studied. The main works are summarized as follows:The homoepitaxial growth on the commercially available single-crystal 6H-SiC wafers was performed in a modified gas source molecular beam epitaxy system. The mesa structured p(+)n junction diodes on the material were fabricated and characterized. The diodes showed a high breakdown voltage of 800 V at room temperature. They operated with good rectification characteristics from room temperature to 673 K.Using thermal evaporation, Ti/6H-SiC Schottky barrier diodes were fabricated. They showed good rectification characteristics from room temperature to 473 K. Using neon implantation to form the edge termination, the breakdown voltage was improved to be 800 V.n-Type 6H-SiC MOS capacitors were fabricated and characterized. Under the same growing conditions, the quality of polysilicon gate capacitors was better than Al. In addition, SiC MOS capacitors had good tolerance to gamma rays. (C) 2002 Published by Elsevier Science B.V.
Resumo:
SOI (Silicon on Insulator) based photonic devices, including stimulated emission from Si diode, RCE (Resonant Cavity Enhanced) photodiode with quantum structure, MOS (Metal Oxide Semiconductor) optical modulator with high frequency, SOI optical matrix switch and wavelength tunable filter are reviewed in the paper. The emphasis will be played on our recent results of SOI-based thermo-optic waveguide matrix switch with low insertion loss and fast response. A folding re-arrangeable non-blocking 4x4 matrix switch with total internal reflection (TIR) mirrors and a first blocking 16 x 16 matrix were fabricated on SOI wafer. The extinction ratio and the crosstalk are better. The insertion loss and the polarization dependent loss (PDL) at 1.55 mu m increase slightly with longer device length and more bend and intersecting waveguides. The insertion losses are expected to decrease 2-3 dB when anti-reflection films are added in the ends of the devices. The rise and fall times of the devices are 2.1 mu s and 2.3 mu s, respectively.
Resumo:
Si-based optoelectronic devices, including stimulated emission from Si diode, 1.3 and 1.5mum SiGe photodetector with quantum structures, 1GHz MOS optical modulator, SOI optical switch matrix and wavelength tunable filter are reviewed in the paper.
Resumo:
Ionizing radiation response of partially-depleted MOS transistors fabricated in the, fluorinated SIMOX wafers has been investigated. The experimental data show that the, radiation-induced threshold voltage shift of PMOSFETs and NMOSFETs, as well as the radiation-induced increase of off-state leakage current of NMOSFETs can be restrained by implanting fluorine ions into the buried oxide of SIMOX wafers.
Resumo:
Homoepitaxial growth of 4H-SiC on off-oriented n-type Si-face (0001) substrates was performed in a home-made hot-wall low pressure chemical vapor deposition (LPCVD) reactor with SiH4 and C2H4 at temperature of 1500 C and pressure of 20 Torr. The surface morphology and intentional in-situ NH3 doping in 4H-SiC epilayers were investigated by using atomic force microscopy (AFM) and secondary ion mass spectroscopy (SIMS). Thermal oxidization of 4H-SiC homoepitaxial layers was conducted in a dry O-2 and H-2 atmosphere at temperature of 1150 C. The oxide was investigated by employing x-ray photoelectron spectroscopy (XPS). 4H-SiC MOS structures were obtained and their C-V characteristics were presented.
Resumo:
In this paper, a one-way NMOS analog switch featuring a low plug-in consumption is presented. The performances of analog switch, especially the performances of source follower are simulated under different conditions with PSPICE. Simulation results and factors affecting the deviation between input and output are analyzed, some advice on how to reduce the deviation between input and output is given. Ar the end of the paper, voltage relationship between input and output of the analog switch is obtained. Function of first degree, Vout = kVin + V0, is used to approximate the voltage relationship. The simulation results anti the value achieved from the approximation equation are given as well.
Resumo:
Silicon carbide (SiC) is recently receiving increased attention due to its unique electrical and thermal properties. It has been regarded as the most appropriate semiconductor material for high power, high frequency, high temperature, and radiation hard microelectronic devices. The fabrication processes and characterization of basic device on 6H-SiC were systematically studied. The main works are summarized as follows:The homoepitaxial growth on the commercially available single-crystal 6H-SiC wafers was performed in a modified gas source molecular beam epitaxy system. The mesa structured p(+)n junction diodes on the material were fabricated and characterized. The diodes showed a high breakdown voltage of 800 V at room temperature. They operated with good rectification characteristics from room temperature to 673 K.Using thermal evaporation, Ti/6H-SiC Schottky barrier diodes were fabricated. They showed good rectification characteristics from room temperature to 473 K. Using neon implantation to form the edge termination, the breakdown voltage was improved to be 800 V.n-Type 6H-SiC MOS capacitors were fabricated and characterized. Under the same growing conditions, the quality of polysilicon gate capacitors was better than Al. In addition, SiC MOS capacitors had good tolerance to gamma rays. (C) 2002 Published by Elsevier Science B.V.
Resumo:
In this paper, construction of hybrid device by integrating nanowires with F1-ATPase motors is described. The nickel nanowires and multi-segment nanowires, including gold and nickel, were fabricated by electrochemical deposition in nanoporous templates. The nickel nanowires functionalized by biotinylated peptide can be assembled directly onto F1-ATPase motors to act as the propellers. If the multicomponent nanowires, including gold and nickel, were selectively functionalized by the thiol group modified ssDNA and the synthetic peptide, respectively, the biotinylated F1- ATPase motors can be attached to the biotinylated peptide on nickel segment of the nanowires. Then, the multi-component nanowires can also be used as the propellers, and one may observe the rotations of the multi-component nanowires driven by F1-ATPase motors. Therefore, introduction of multiple segments along the length of a nanowire can lead to a variety of multiple chemical functionalities, which can be selectively bound to cells and special biomolecules. This method provides an insight for the construction of other hybrid devices with its controlling arrangement of different biomolecule on designed nanometer scale structures.
Resumo:
Squeeze-film effects of perforated plates for small amplitude vibration are analyzed through modified Reynolds equation (MRE). The analytical analysis reckons in most important influential factors: compressibility of the air, border effects, and the resistance caused by vertical air flow passing through perforated holes. It is found that consideration of air compressibility is necessary for high operating frequency and small ratio of the plate width to the attenuation length. The analytical results presented in this paper agree with ANSYS simulation results better than that under the air incompressibility assumption. The analytical analysis can be used to estimate the squeeze-film effects causing damping and stiffness added to the system. Since the value of Reynolds number involved in this paper is low (< 1), inertial effects are neglected.
Resumo:
In the present research, the discrete dislocation theory is used to analyze the size effect phenomena for the MEMS devices undergoing micro-bending load. A consistent result with the experimental one in literature is obtained. In order to check the effectiveness to use the discrete dislocation theory in predicting the size effect, both the basic version theory and the updated one are adopted simultaneously. The normalized stress-strain relations of the material are obtained for different plate thickness or for different obstacle density. The prediction results are compared with experimental results.
Resumo:
A new set of equations for the energies of the mean magnetic field and the mean plasma velocity is derived taking the dynamo effects into account, by which the anomalous phenomenon, T(i) > T(e), observed in some reversed field pinches (RFP's) is successfully explained.
Resumo:
Nanowires functionalized by special molecules can be used to as the candidates for biological application in many areas. In this paper, nickel nanowires, which were fabricated by electrochemical deposition and functionalized by biotinylated peptide, were applied to constructing the hybrid device powered by F-1-ATPase motors.
Resumo:
Poly(dimethylsiloxane) (PDMS) is usually considered as a dielectric material and the PDMS microchannel wall can be treated as an electrically insulated boundary in an applied electric field. However, in certain layouts of microfluidic networks, electrical leakage through the PDMS microfluidic channel walls may not be negligible, which must be carefully considered in the microfluidic circuit design. In this paper, we report on the experimental characterization of the electrical leakage current through PDMS microfluidic channel walls of different configurations. Our numerical and experimental studies indicate that for tens of microns thick PDMS channel walls, electrical leakage through the PDMS wall could significantly alter the electrical field in the main channel. We further show that we can use the electrical leakage through the PDMS microfluidic channel wall to control the electrolyte flow inside the microfluidic channel and manipulate the particle motion inside the microfluidic channel. More specifically, we can trap individual particles at different locations inside the microfluidic channel by balancing the electroosmotic flow and the electrophoretic migration of the particle.