43 resultados para Laplace, Transformación de
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
对于为论证球形液滴附加压强的Young-Laplace公式而设计的一个理想实验,有文献试图借助吉布斯自由能函数进行证明,本文给出符合这一条件的证明方法.
Resumo:
In this paper the problem of a cylindrical crack located in a functionally graded material (FGM) interlayer between two coaxial elastic dissimilar homogeneous cylinders and subjected to a torsional impact loading is considered. The shear modulus and the mass density of the FGM interlayer are assumed to vary continuously between those of the two coaxial cylinders. This mixed boundary value problem is first reduced to a singular integral equation with a Cauchy type kernel in the Laplace domain by applying Laplace and Fourier integral transforms. The singular integral equation is then solved numerically and the dynamic stress intensity factor (DSIF) is also obtained by a numerical Laplace inversion technique. The DSIF is found to rise rapidly to a peak and then reduce and tend to the static value almost without oscillation. The influences of the crack location, the FGM interlayer thickness and the relative magnitudes of the adjoining material properties are examined. It is found among others that, by increasing the FGM gradient, the DSIF can be greatly reduced.
Resumo:
研究两半无限大黏弹性体界面Griffith裂纹在反平面剪切突加载荷下,裂纹尖端动应力强度因子的时间响应。首先,运用积分变换方法将黏弹性混合边值问题化成变换域上的对偶积分方程。通过引入裂纹位错密度函数进一步化成Cauchy型奇异积分方程。运用分片连续函数法数值求解奇异积分方程,得到变换域内的动应力强度因子。再用Laplace积分变换数值反演方法,将变换域的解反演到时间域内,最终求得动应力强度因子的时间响应,并对黏弹性参数的影响进行了分析。
Resumo:
结合国内外的研究成果,就粘弹性力学中存在的各种对应原理及数值反演方法进行了归类和总结。结合在求解粘弹性边值问题中的应用,对各类方法的特点进行了评述,并指出存在的问题及发展新的数值方法的研究重点。
Resumo:
In this paper, discussions are focused on the growth of a nucleated void in a viscoelastic material. The in situ tensile tests of specimens made of high-density polyethylene, filled with spherical glass beads (HDPE/GB) are carried out under SEM. The experimental result indicates that the microvoid nucleation is induced by the partially interfacial debonding of particles. By means of the Laplace transform and the Eshelby's equivalent inclusion method, a new analytical expression of the void strain at different nucleation times is derived. It can be seen that the strain of the nucleated void depends not only on the remote strain history, but also on the nucleation time. This expression is also illustrated by numerical examples, and is found to be of great usefulness in the study of damage evolution in viscoelastic materials.
Resumo:
The diffusive wave equation with inhomogeneous terms representing hydraulics with uniform or concentrated lateral inflow intoa river is theoretically investigated in the current paper. All the solutions have been systematically expressed in a unified form interms of response function or so called K-function. The integration of K-function obtained by using Laplace transform becomesS-function, which is examined in detail to improve the understanding of flood routing characters. The backwater effects usuallyresulting in the discharge reductions and water surface elevations upstream due to both the downstream boundary and lateral infloware analyzed. With a pulse discharge in upstream boundary inflow, downstream boundary outflow and lateral inflow respectively,hydrographs of a channel are routed by using the S-functions. Moreover, the comparisons of hydrographs in infinite, semi-infiniteand finite channels are pursued to exhibit the different backwater effects due to a concentrated lateral inflow for various channeltypes.
Resumo:
The torsional impact response of a penny-shaped crack in an unbounded transversely isotropic solid is considered. The shear moduli are assumed to be functionally graded such that the mathematics is tractable. Laplace transform and Hankel transform are used to reduce the problem to solving a Fredholm integral equation. The crack tip stress fields are obtained. Investigated are the influence of material nonhomogeneity and orthotropy on the dynamic stress intensity factor. The peak value of the dynamic stress intensity factor can be suppressed by increasing the shear moduli's gradient and/or increasing the shear modulus in a direction perpendicular to the crack surface.
Resumo:
The dynamic response of a finite crack in an unbounded Functionally Graded Material (FGM) subjected to an antiplane shear loading is studied in this paper. The variation of the shear modulus of the functionally graded material is modeled by a quadratic increase along the direction perpendicular to the crack surface. The dynamic stress intensity factor is extracted from the asymptotic expansion of the stresses around the crack tip in the Laplace transform plane and obtained in the time domain by a numerical Laplace inversion technique. The influence of graded material property on the dynamic intensity factor is investigated. It is observed that the magnitude of dynamic stress intensity factor for a finite crack in such a functionally graded material is less than in the homogeneous material with a property identical to that of the FGM crack plane.
Resumo:
研究受反平面剪切作用的功能梯度材料动态裂纹问题,通过积分变换-对偶积分方程方法推出了裂纹尖端动态应力场。时间域内的动态应力强度因子由Laplace数值反演获得。研究结果表明功能梯度材料的梯度越大,相应的裂纹问题的动态应力强度因子值越低。
Resumo:
Elastodynamic stress intensity factor histories of an unbounded solid containing a semi-infinite plane crack that propagates at a constant velocity under 3-D time-independent combined mode loading are considered. The fundamental solution, which is the response of point loading, is obtained. Then, stress intensity factor histories of a general loading system are written out in terms of superposition integrals. The methods used here are the Laplace transform methods in conjunction with the Wiener-Hopf technique.
Resumo:
In this paper, the dynamic response of a penny-shaped interface crack in bonded dissimilar homogeneous half-spaces is studied. It is assumed that the two materials are bonded together with such a inhomogeneous interlayer that makes the elastic modulus in the direction perpendicular to the crack surface is continuous throughout the space. The crack surfaces art assumed to be subjected to torsional impact loading. Laplace and Hankel integral transforms are applied combining with a dislocation density,function to reduce the mixed boundary value problem into a singular integral equation with a generalized Cauchy kernel in Laplace domain. By solving the singular integral equation numerically, and using a numerical Laplace inversion technique, the dynamic stress intensity factors art obtained. The influences of material properties and interlayer thickness on the dynamic stress intensity factor are investigated.
Resumo:
本文讨论有温度梯度场的稀薄气体(K_n(?)1时)中圆球所受的热泳力问题。在内区设分子在壁面作Maxwell类型反射求解B-K-W方程,与外区的Stokes方程和Laplace方程的解匹配。滑移系数C_m,热蠕动系数C_s和温度跳跃系数C_t,做为待定量在内区解的一阶近似中定出。所得的热泳力与实验相符,计算所得的C_m,C_s和C_t之值及对适应系数α的依赖关系与用变分等方法对平板问题所得结果相符。
Resumo:
本文用Laplace-Fourier变换方法研究两层流体中的瞬变波,分析了近似色散关系,讨论了不同模式波的主次关系,导出了由初始位移、大气扰动、水下爆炸,地震等因素所激励的表面波和内波的波形及其远场的渐近表达式。
Resumo:
采用控制金属材料宏观塑性流动的两个无量纲物理参数作为小参数,将一维弹/粘-塑性问题的解摄动展开,从而,求解非线性波动方程的问题可以转化成求解相应的齐次或非齐次电报方程的问题,用Laplace积分变换或级数展开技术首先得到零次精确解。然后,用Riemann函数方法可获得一次和高次摄动解。与非线性问题的数值解比较,在恒应力或恒速度边界条件下,一次摄动解给出了波动问题的良好近似。这就表明,摄动技术在研究一类广泛的弹/粘-塑波问题中是有效的。