6 resultados para LEAP

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sequences and gene organisation of two LEAP-2 molecules (LEAP-2A and LEAP-2B) from rainbow trout, Oncorhynchus mykiss are presented. Both genes consist of a 3 exon/2 intron structure, with exon sizes comparable to known mammalian genes. LEAP-2A notably differs from LEAP-2B in having larger introns and a larger 3'UTR. The predicted proteins contain a signal peptide and prodomain, followed by a mature peptide of 41 aa containing four conserved cysteines. The RXXR cleavage site to release the mature peptide was also conserved. Both genes were found to be constitutively expressed in the liver, with expression in the intestine, and to a lesser extent the skin, evident after bacterial challenge. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, aspects of the structural mechanics of the upper and lower limbs of the three Chinese species of Rhinopithecus were examined. Linear regression and reduced major axis (RMA) analyses of natural log-transformed data were used to examine the dimensions of limb bones and other relationships to body size and locomotion. The results of this study suggest that: (1) the allometry exponents of the lengths of long limbs deviate from isometry, being moderately negative, while the shaft diameters (both sagittal and transverse) show significantly positive allometry; (2) the sagittal diameters of the tibia and ulna show extremely significantly positive allometry - the relative enlargement of the sagittal, as opposed to transverse, diameters of these bones suggests that the distal segments of the fore- and hindlimbs of Rhinopithecus experience high bending stresses during locomotion; (3) observations of Rhinopithecus species in the field indicate that all species engage in energetic leaping during arboreal locomotion. The limbs experience rapid and dramatic decelerations upon completion of a leap. We suggest that these occasional decelerations produce high bending stresses in the distal limb segments and so account for the hypertrophy of the sagittal diameters of the ulna and tibia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MEMS是当前研究的一个热点,微机器人对于发展MEMS具有重要意义,也是MEMS的一项不可缺少的内容。微动技术是机器人学理论的一个重要分支,也是发展微机器人及相关微技术的基础。目前,各种新型微驱动器层出不穷,极大地推动了微机器人技术的发展。对于微动原理进行分析,从本质上弄清微动产生的机理,不仅可以丰富机器人学理论,还有可能使微动技术产生质的飞跃。从这一角度出发,对各种微动原理加以详细分析和比较,以期得出有意义的结论。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The processes of seismic wave propagation in phase space and one way wave extrapolation in frequency-space domain, if without dissipation, are essentially transformation under the action of one parameter Lie groups. Consequently, the numerical calculation methods of the propagation ought to be Lie group transformation too, which is known as Lie group method. After a fruitful study on the fast methods in matrix inversion, some of the Lie group methods in seismic numerical modeling and depth migration are presented here. Firstly the Lie group description and method of seismic wave propagation in phase space is proposed, which is, in other words, symplectic group description and method for seismic wave propagation, since symplectic group is a Lie subgroup and symplectic method is a special Lie group method. Under the frame of Hamiltonian, the propagation of seismic wave is a symplectic group transformation with one parameter and consequently, the numerical calculation methods of the propagation ought to be symplectic method. After discrete the wave field in time and phase space, many explicit, implicit and leap-frog symplectic schemes are deduced for numerical modeling. Compared to symplectic schemes, Finite difference (FD) method is an approximate of symplectic method. Consequently, explicit, implicit and leap-frog symplectic schemes and FD method are applied in the same conditions to get a wave field in constant velocity model, a synthetic model and Marmousi model. The result illustrates the potential power of the symplectic methods. As an application, symplectic method is employed to give synthetic seismic record of Qinghai foothills model. Another application is the development of Ray+symplectic reverse-time migration method. To make a reasonable balance between the computational efficiency and accuracy, we combine the multi-valued wave field & Green function algorithm with symplectic reverse time migration and thus develop a new ray+wave equation prestack depth migration method. Marmousi model data and Qinghai foothills model data are processed here. The result shows that our method is a better alternative to ray migration for complex structure imaging. Similarly, the extrapolation of one way wave in frequency-space domain is a Lie group transformation with one parameter Z and consequently, the numerical calculation methods of the extrapolation ought to be Lie group methods. After discrete the wave field in depth and space, the Lie group transformation has the form of matrix exponential and each approximation of it gives a Lie group algorithm. Though Pade symmetrical series approximation of matrix exponential gives a extrapolation method which is traditionally regarded as implicit FD migration, it benefits the theoretic and applying study of seismic imaging for it represent the depth extrapolation and migration method in a entirely different way. While, the technique of coordinates of second kind for the approximation of the matrix exponential begins a new way to develop migration operator. The inversion of matrix plays a vital role in the numerical migration method given by Pade symmetrical series approximation. The matrix has a Toepelitz structure with a helical boundary condition and is easy to inverse with LU decomposition. A efficient LU decomposition method is spectral factorization. That is, after the minimum phase correlative function of each array of matrix had be given by a spectral factorization method, all of the functions are arranged in a position according to its former location to get a lower triangular matrix. The major merit of LU decomposition with spectral factorization (SF Decomposition) is its efficiency in dealing with a large number of matrixes. After the setup of a table of the spectral factorization results of each array of matrix, the SF decomposition can give the lower triangular matrix by reading the table. However, the relationship among arrays is ignored in this method, which brings errors in decomposition method. Especially for numerical calculation in complex model, the errors is fatal. Direct elimination method can give the exact LU decomposition But even it is simplified in our case, the large number of decomposition cost unendurable computer time. A hybrid method is proposed here, which combines spectral factorization with direct elimination. Its decomposition errors is 10 times little than that of spectral factorization, and its decomposition speed is quite faster than that of direct elimination, especially in dealing with a large number of matrix. With the hybrid method, the 3D implicit migration can be expected to apply on real seismic data. Finally, the impulse response of 3D implicit migration operator is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

3D wave equation prestack depth migration is the effective tool for obtaining the exact imaging result of complex geology structures. It's a part of the 3D seismic data processing. 3D seismic data processing belongs to high dimension signal processing, and there are some difficult problems to do with. They are: How to process high dimension operators? How to improve the focusing? and how to construct the deconvolution operator? The realization of 3D wave equation prestack depth migration, not only realized the leap from poststack to prestack, but also provided the important means to solve the difficult problems in high dimension signal processing. In this thesis, I do a series research especially for the solve of the difficult problems around the 3D wave equation prestack depth migration and using it as a mean. So this thesis service for the realization of 3D wave equation prestack depth migration for one side and improve the migration effect for another side. This thesis expatiates in five departs. Summarizes the main contents as the follows: In the first part, I have completed the projection from 3D data point area to low dimension are using de big matrix transfer and trace rearrangement, and realized the liner processing of high dimension signal. Firstly, I present the mathematics expression of 3D seismic data and the mean according to physics, present the basic ideal of big matrix transfer and describe the realization of five transfer models for example. Secondly, I present the basic ideal and rules for the rearrange and parallel calculate of 3D traces, and give a example. In the conventional DMO focusing method, I recall the history of DM0 process firstly, give the fundamental of DMO process and derive the equation of DMO process and it's impulse response. I also prove the equivalence between DMO and prestack time migration, from the kinematic character of DMO. And derive the relationship between DMO base on wave equation and prestack time migration. Finally, I give the example of DMO process flow and synthetic data of theoretical models. In the wave equation prestak depth migration, I firstly recall the history of migration from time to depth, from poststack to prestack and from 2D to 3D. And conclude the main migration methods, point out their merit and shortcoming. Finally, I obtain the common image point sets using the decomposed migration program code.In the residual moveout, I firstly describe the Viterbi algorithm based on Markov process and compound decision theory and how to solve the shortest path problem using Viterbi algorithm. And based on this ideal, I realized the residual moveout of post 3D wave equation prestack depth migration. Finally, I give the example of residual moveout of real 3D seismic data. In the migration Green function, I firstly give the concept of migration Green function and the 2D Green function migration equation for the approximate of far field. Secondly, I prove the equivalence of wave equation depth extrapolation algorithms. And then I derive the equation of Green function migration. Finally, I present the response and migration result of Green function for point resource, analyze the effect of migration aperture to prestack migration result. This research is benefit for people to realize clearly the effect of migration aperture to migration result, and study on the Green function deconvolution to improve the focusing effect of migration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discovery of the highly productive Renqiu buried hill reservoir in Bohai Bay Basin in 1975 started the high tide of finding buried hill reservoirs in China and their research. As the advance of E&P technologies, the study of buried hill reservoir in China had a qualitative leap. The reservoir description and some other aspects of development have reached or approached to the international leading level. However, some core techniques for reservoir study such as structure & faulting system study, formation prediction and connection study and heterogeneous model's construction could not completely carry out the quantitative or accurate reservoir description, e. g. the areal distribution of porosity, permeability and oil saturation. Especially, the modeling for reservoir simulation is still wandering in the stage of simplicity. The inaccurate understanding of geology could not derive 3D heterogeneous geological model that can reveal the actual underground situation thus could not design practical and feasible oilfield development plan. Therefore, the problems of low oil recovery rate, low recovery factor and poor development effectiveness have not been solved. The poor connection of the reservoir determined that waterflooding could not get good development effect and the production had to depend on the reservoir elastic energy, and this will bring big difficulty for development modification and improvement of oil recovery. This study formed a series of techniques for heterogeneous model research that can be used to construct heterogeneous model consistent with the reservoir geology. Thus the development effectiveness, success ratio of drilling and percent of producing reserves can be enhanced. This study can make the development of buried hill reservoir be of high recovery rate and high effect. The achievements of this study are as follows: 1. Evaluated the resources, summarized the geological characteristics and carried out the reservoir classification of the buried hill reservoirs in Shengli petroliferous area; 2. Established the markers for stratigraphical correlation and formed the correlation method for complex buried hill reservoirs; 3. Analyzed the structural features of the buried hill reservoirs, finished the structure interpretation and study of faulting system using synthetic seismograms, horizontal slices and coherent analysis, and clarified structural development history of the buried hill reservoirs in Shengli petroliferous area; 4. Determined the 3 classes and 7 types of pore space and the main pore space type, the logging response characteristics and the FMI logging identified difference between artificial and natural fractures by the comprehensive usage of core analysis, other lab analyses, conventional logging, FMI logging and CMR logging; 5. Determined the factors controlled the growth of the fractures, vugs and cavities, proposed the main formation prediction method for buried hill reservoir and analyzed their technical principium and applicability, and formed the seismic method and process for buried hill reservoir description; 6. Established the reserve calculation method for buried hill reservoirs, i. e. the reserves of fractures and matrix are calculated separately; the recoverable reserves are calculated by decline method and are classified by the SPE criteria; 7. Studied restraining barriers and the sealing of the faults thus clarified the oil-bearing formations of the buried hill reservoirs, and verified the multiple reservoir forming theory; 8. Formed reasonable procedure of buried hill reservoir study; 9. Formed the 3 D modeling technology for buried hill reservoirs; 10. Studied a number of buried hill blocks on the aspects of reservoir description, reservoir engineering and development plan optimization based on the above research and the profit and social effect are remarkable.