64 resultados para KdV hierarchy
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A hierarchical model is proposed for the joint moments of the passive scalar dissipation and the velocity dissipation in fluid turbulence. This model predicts that the joint probability density function (PDF) of the dissipations is a bivariate log-Poisson. An analytical calculation of the scaling exponents of structure functions of the passive scalar is carried out for this hierarchical model, showing a good agreement with the results of direct numerical simulations and experiments.
Resumo:
We prepose a 5-bit lattice Boltzmann model for KdV equation. Using Chapman-Enskog expansion and multiscale technique, we obtained high order moments of equilibrium distribution function, and the 3rd dispersion coefficient and 4th order viscosity. The parameters of this scheme can be determined by analysing the energy dissipation.
Resumo:
The advent of nanotechnology has necessitated a better understanding of how material microstructure changes at the atomic level would affect the macroscopic properties that control the performance. Such a challenge has uncovered many phenomena that were not previously understood and taken for granted. Among them are the basic foundation of dislocation theories which are now known to be inadequate. Simplifying assumptions invoked at the macroscale may not be applicable at the micro- and/or nanoscale. There are implications of scaling hierrachy associated with in-homegeneity and nonequilibrium. of physical systems. What is taken to be homogeneous and equilibrium at the macroscale may not be so when the physical size of the material is reduced to microns. These fundamental issues cannot be dispensed at will for the sake of convenience because they could alter the outcome of predictions. Even more unsatisfying is the lack of consistency in modeling physical systems. This could translate to the inability for identifying the relevant manufacturing parameters and rendering the end product unpractical because of high cost. Advanced composite and ceramic materials are cases in point. Discussed are potential pitfalls for applying models at both the atomic and continuum levels. No encouragement is made to unravel the truth of nature. Let it be partiuclates, a smooth continuum or a combination of both. The present trend of development in scaling tends to seek for different characteristic lengths of material microstructures with or without the influence of time effects. Much will be learned from atomistic simulation models to show how results could differ as boundary conditions and scales are changed. Quantum mechanics, continuum and cosmological models provide evidence that no general approach is in sight. Of immediate interest is perhaps the establishment of greater precision in terminology so as to better communicate results involving multiscale physical events.
Resumo:
Burgers suggested that the main properties of free-turbulence in the boundless area without basic flow might be understood with the aid of the following equation, which was much simpler than those of fluid dynamics,
Resumo:
We analyze in this paper the general covariant energy-momentum tensor of the gravitational system in general five-dimensional cosmological brane-world models. Then through calculating this energy-momentum for the cosmological generalization of the Randall-Sundrum model, which includes the original RS model as the static limit, we are able to show that the weakness of the gravitation on the "visible" brane is a general feature of this model. This is the origin of the gauge hierarchy from a gravitational point of view. Our results are also consistent with the fact that a gravitational system has vanishing total energy.
Resumo:
Forage selection plays a prominent role in the process of returning cultivated lands back into grasslands. The conventional method of selecting forage species can only provide attempts for problem-solving without considering the relationships among the decision factors globally. Therefore, this study is dedicated to developing a decision support system to help farmers correctly select suitable forage species for the target sites. After collecting data through a field study, we developed this decision support system. It consists of three steps: (1) the analytic hierarchy process (AHP), (2) weights determination, and (3) decision making. In the first step, six factors influencing forage growth were selected by reviewing the related references and by interviewing experts. Then a fuzzy matrix was devised to determine the weight of each factor in the second step. Finally, a gradual alternative decision support system was created to help farmers choose suitable forage species for their lands in the third step. The results showed that the AHP and fuzzy logic are useful for forage selection decision making, and the proposed system can provide accurate results in a certain area (Gansu Province) of China.
Resumo:
摄动有限差分(PFD)方法,既离散微商项也离散非微商项(包括微商系数),在微商用直接差分近似的前提下提高差分格式的精度和分辨率。PFD方法包括局部线化微分方程的摄动精确数 值解(PENS)方法和摄动数值解(PNS)方法以及考虑非线性近似的摄动高精度差分(PHD)方法。论述了这些方法的基本思想、具体技巧、若干方程(对流扩散方程、对流扩散反应方程、双 曲方程、抛物方程和KdV方程)的PENS、PNS和PHD格式,它们的性质及数值实验。并与有关的数值方法作了必要的比较。最后提出值得进一步研究的一些课题。
Resumo:
Rossby waves are the most important waves in the atmosphere and ocean, and are parts of a large-scale system in fluid. The theory and observation show that, they satisfy quasi-geostrophic and quasi-static equilibrium approximations. In this paper, solitary Rossby waves induced by linear topography in barotropic fluids with a shear flow are studied. In order to simplify the problem, the topography is taken as a linear function of latitude variable y, then employing a weakly nonlinear method and a perturbation method, a KdV (Korteweg-de Vries) equation describing evolution of the amplitude of solitary Rossby waves induced by linear topography is derived. The results show that the variation of linear topography can induce the solitary Rossby waves in barotropic fluids with a shear flow, and extend the classical geophysical theory of fluid dynamics.
Resumo:
A fully nonlinear and dispersive model within the framework of potential theory is developed for interfacial (2-layer) waves. To circumvent the difficulties arisen from the moving boundary problem a viable technique based on the mixed Eulerian and Lagrangian concept is proposed: the computing area is partitioned by a moving mesh system which adjusts its location vertically to conform to the shape of the moving boundaries but keeps frozen in the horizontal direction. Accordingly, a modified dynamic condition is required to properly compute the boundary potentials. To demonstrate the effectiveness of the current method, two important problems for the interfacial wave dynamics, the generation and evolution processes, are investigated. Firstly, analytical solutions for the interfacial wave generations by the interaction between the barotropic tide and topography are derived and compared favorably with the numerical results. Furthermore simulations are performed for the nonlinear interfacial wave evolutions at various water depth ratios and satisfactory agreement is achieved with the existing asymptotical theories. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
A shear-lag model is used to study the mechanical properties of bone-like hierarchical materials. The relationship between the overall effective modulus and the number of hierarchy level is obtained. The result is compared with that based on the tension-shear chain model and finite element simulation, respectively. It is shown that all three models can be used to describe the mechanical behavior of the hierarchical material when the number of hierarchy levels is small. By increasing the number of hierarchy level, the shear-lag result is consistent with the finite element result. However the tension-shear chain model leads to an opposite trend. The transition point position depends on the fraction of hard phase, aspect ratio and modulus ratio of hard phase to soft phase. Further discussion is performed on the flaw tolerance size and strength of hierarchical materials based on the shear-lag analysis.
Resumo:
本文研究了在流动方向有缓慢变化的任意截面渠道中的非线性周期波、孤立波以及孤立波在这种渠道中的分裂;导出了适用于这种渠道的变系数KdV方程,并求出了该方程的首项近似解;得出了波速、周期、波高和渠道几何尺寸之间的关系,得到了分裂后孤立波个数的判别式及分裂后孤立波波幅的表示式,并应用于矩形渠道和左右对称的三角形渠道。对于矩形渠道的情况,本文的结果和Madsen和Mei,Johnson,Svendsen和Buhr Hansen等人的结果一致。
Resumo:
<正> 一、引言 如所周知,摄动法(特别是奇异摄动法)在研究弱非线性波方面有着广泛的应用[1—5]。其中,近年来发展形成的约化摄动法已经成了分析各种非线性波远场的有力工具[6—8]。 约化摄动法的实质是,对于一般的描述非线性波的复杂方程组,通过适当的坐标变形和摄动展开,在一阶近似下,把方程组约化成较为简单可解的单个非线性方程(例如Burgers方程、Korteweg-de Vries方程、非线性Schrodinger方程等),从而可以分析远离波的相互作用区的远场。