16 resultados para Iterative Closest Point (ICP) Algorithm
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
测量数据的精确定位是实现复杂曲面加工检测的关键,针对测量点云数据与NURBS表示的CAD自由曲面模型匹配中求最近点计算方面存在的问题,提出了一种简单、有效的寻找最近点的方法。该方法与由测量点集评估给定曲面上的最近点的传统算法相反,采用点集曲面(point set surface,PSS)投影算法,对给定自由曲面模型上有限个点与不附加任何几何和拓扑信息的散乱点集之间进行粗匹配获得初始位置,进而以最近点迭代算法(ICP)完成测量数据定位的精确调整,达到全局及局部最优的目标。实验结果表明,采用PSS投影算法法寻找最近点不仅效率高,而且能得到全局匹配结果,可以为精匹配提供较好的计算初值,减少了ICP算法进行二次匹配时,迭代次数及执行时间并且精度得到了较大提高。
Resumo:
In this paper, we constructed a Iris recognition algorithm based on point covering of high-dimensional space and Multi-weighted neuron of point covering of high-dimensional space, and proposed a new method for iris recognition based on point covering theory of high-dimensional space. In this method, irises are trained as "cognition" one class by one class, and it doesn't influence the original recognition knowledge for samples of the new added class. The results of experiments show the rejection rate is 98.9%, the correct cognition rate and the error rate are 95.71% and 3.5% respectively. The experimental results demonstrate that the rejection rate of test samples excluded in the training samples class is very high. It proves the proposed method for iris recognition is effective.
Resumo:
This paper discusses the algorithm on the distance from a point and an infinite sub-space in high dimensional space With the development of Information Geometry([1]), the analysis tools of points distribution in high dimension space, as a measure of calculability, draw more attention of experts of pattern recognition. By the assistance of these tools, Geometrical properties of sets of samples in high-dimensional structures are studied, under guidance of the established properties and theorems in high-dimensional geometry.
nbs: a new representation for point surfaces based on genetic clustering algorithm: cad and graphics
Resumo:
为实现对模型不确定的有约束非线性系统在特定时间域上输出轨迹的有效跟踪,将改进的克隆选择算法用于求解迭代学习控制中的优化问题。提出基于克隆选择算法的非线性优化迭代学习控制。在每次迭代运算后,一个克隆选择算法用于求解下次迭代运算中的最优输入,另一个克隆选择算法用于修正系统参考模型。仿真结果表明,该方法比GA-ILC具有更快的收敛速度,能够有效处理输入上的约束以及模型不确定问题,通过少数几次迭代学习就能取得满意的跟踪效果。
Resumo:
The photon iterative numerical technique, which chooses the outputs of the amplified spontaneous emission spectrum and lasing mode as iteration variables to solve the rate equations, is proposed and applied to analyse the steady behaviour of conventional semiconductor optical amplifiers (SOAs) and gain-clamped semiconductor optical amplifiers (GCSOAs). Numerical results show that the photon iterative method is a much faster and more efficient algorithm than the conventional approach, which chooses the carrier density distribution of the SOAs as the iterative variable. It is also found that the photon iterative method has almost the same computing efficiency for conventional SOAs and GCSOAs.
Resumo:
With a view to solve the problems in modern information science, we put forward a new subject named High-Dimensional Space Geometrical Informatics (HDSGI). It builds a bridge between information science and point distribution analysis in high-dimensional space. A good many experimental results certified the correctness and availability of the theory of HDSGI. The proposed method for image restoration is an instance of its application in signal processing. Using an iterative "further blurring-debluring-further blurring" algorithm, the deblured image could be obtained.
Resumo:
A novel image restoration approach based on high-dimensional space geometry is proposed, which is quite different from the existing traditional image restoration techniques. It is based on the homeomorphisms and "Principle of Homology Continuity" (PHC), an image is mapped to a point in high-dimensional space. Begin with the original blurred image, we get two further blurred images, then the restored image can be obtained through the regressive curve derived from the three points which are mapped form the images. Experiments have proved the availability of this "blurred-blurred-restored" algorithm, and the comparison with the classical Wiener Filter approach is presented in final.
Resumo:
Compared with the ordinary adaptive filter, the variable-length adaptive filter is more efficient (including smaller., lower power consumption and higher computational complexity output SNR) because of its tap-length learning algorithm, which is able to dynamically adapt its tap-length to the optimal tap-length that best balances the complexity and the performance of the adaptive filter. Among existing tap-length algorithms, the LMS-style Variable Tap-Length Algorithm (also called Fractional Tap-Length Algorithm or FT Algorithm) proposed by Y.Gong has the best performance because it has the fastest convergence rates and best stability. However, in some cases its performance deteriorates dramatically. To solve this problem, we first analyze the FT algorithm and point out some of its defects. Second, we propose a new FT algorithm called 'VSLMS' (Variable Step-size LMS) Style Tap-Length Learning Algorithm, which not only uses the concept of FT but also introduces a new concept of adaptive convergence slope. With this improvement the new FT algorithm has even faster convergence rates and better stability. Finally, we offer computer simulations to verify this improvement.
Resumo:
The goal of image restoration is to restore the original clear image from the existing blurred image without distortion as possible. A novel approach based on point location in high-dimensional space geometry method is proposed, which is quite different from the thought ways of existing traditional image restoration approaches. It is based on the high-dimensional space geometry method, which derives from the fact of the Principle of Homology-Continuity (PHC). Begin with the original blurred image, we get two further blurred images. Through the regressive deducing curve fitted by these three images, the first iterative deblured image could be obtained. This iterative "blurring-debluring-blurring" process is performed till reach the deblured image. Experiments have proved the availability of the proposed approach and achieved not only common image restoration but also blind image restoration which represents the majority of real problems.
Resumo:
With a view to solve the problems in modern information science, we put forward a new subject named High-Dimensional Space Geometrical Informatics (HDSGI). It builds a bridge between information science and point distribution analysis in high-dimensional space. A good many experimental results certified the correctness and availability of the theory of HDSGI. The proposed method for image restoration is an instance of its application in signal processing. Using an iterative "further blurring-debluring-further blurring" algorithm, the deblured image could be obtained.
Resumo:
A novel image restoration approach based on high-dimensional space geometry is proposed, which is quite different from the existing traditional image restoration techniques. It is based on the homeomorphisms and "Principle of Homology Continuity" (PHC), an image is mapped to a point in high-dimensional space. Begin with the original blurred image, we get two further blurred images, then the restored image can be obtained through the regressive curve derived from the three points which are mapped form the images. Experiments have proved the availability of this "blurred-blurred-restored" algorithm, and the comparison with the classical Wiener Filter approach is presented in final.
Resumo:
A novel geometric algorithm for blind image restoration is proposed in this paper, based on High-Dimensional Space Geometrical Informatics (HDSGI) theory. In this algorithm every image is considered as a point, and the location relationship of the points in high-dimensional space, i.e. the intrinsic relationship of images is analyzed. Then geometric technique of "blurring-blurring-deblurring" is adopted to get the deblurring images. Comparing with other existing algorithms like Wiener filter, super resolution image restoration etc., the experimental results show that the proposed algorithm could not only obtain better details of images but also reduces the computational complexity with less computing time. The novel algorithm probably shows a new direction for blind image restoration with promising perspective of applications.
Resumo:
An optimization method based on uniform design in conjunction with genetic algorithm is described. According to the proposed method, the uniform design technique was applied to the design of starting experiments, which can reduce the number of experiments compared with traditional simultaneous methods, such as simplex. And genetic algorithm was used in optimization procedure, which can improve the rapidity of optimal procedure. The hierarchical chromatographic response function was modified to evaluate the separation equality of a chromatogram. An iterative procedure was adopted to search for the optimal condition to improve the accuracy of predicted retention and the quality of the chromatogram. The optimization procedure was tested in optimization of the chromatographic separation of 11 alkaloids in reversed-phase ion pair chromatography and satisfactory optimal result was obtained. (C) 2003 Elsevier B.V. All rights reserved.