10 resultados para Invariants of Ulm-Kaplansky
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The probability distribution of the four-phase structure invariants (4PSIs) involving four pairs of structure factors is derived by integrating the direct methods with isomorphous replacement (IR). A simple expression of the reliability parameter for 16 types of invariant is given in the case of a native protein and a heavy-atom derivative. Test calculations on a protein and its heavy-atom derivative using experimental diffraction data show that the reliability for 4PSI estimates is comparable with that for the three-phase structure invariants (3PSIs), and that a large-modulus invariants method can be used to improve the accuracy.
Resumo:
A novel finite volume method has been presented to solve the shallow water equations. In addition to the volume-integrated average (VIA) for each mesh cell, the surface-integrated average (SIA) is also treated as the model variable and is independently predicted. The numerical reconstruction is conducted based on both the VIA and the SIA. Different approaches are used to update VIA and SIA separately. The SIA is updated by a semi-Lagrangian scheme in terms of the Riemann invariants of the shallow water equations, while the VIA is computed by a flux-based finite volume formulation and is thus exactly conserved. Numerical oscillation can be effectively avoided through the use of a non-oscillatory interpolation function. The numerical formulations for both SIA and VIA moments maintain exactly the balance between the fluxes and the source terms. 1D and 2D numerical formulations are validated with numerical experiments. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
The probability distribution of the four-phase invariants in the case of single isomorphous replacement has been developed to estimate some individual phases. An example of its application to obtain the phases having special values of 0, pi or +/-pi /2 is given for a known protein structure in space group P2(1)2(1)2(1). The phasing procedure includes the determination of starting phases and an iterative calculation. The initial values of starting phases, which are required by the formula, can be obtained from the estimate of one-phase seminvariants and by specifying the origin and enantiomorph. In addition, the calculations lead to two sets of possible phases for each type of reflection by assigning arbitrarily an initial phase value. The present method provides a possibility for the multisolution technique to increase greatly the number of known phases while keeping the number of the trials quite small.
Resumo:
Concise probabilistic formulae with definite crystallographic implications are obtained from the distribution for eight three-phase structure invariants (3PSIs) in the case of a native protein and a heavy-atom derivative [Hauptman (1982). Acta Cryst. A38, 289-294] and from the distribution for 27 3PSIs in the case of a native and two derivatives [Fortier, Weeks & Hauptman (1984). Acta Cryst. A40, 646-651]. The main results of the probabilistic formulae for the four-phase structure invariants are presented and compared with those for the 3PSIs. The analysis directly leads to a general formula of probabilistic estimation for the n-phase structure invariants in the case of a native and m derivatives. The factors affecting the estimated accuracy of the 3PSIs are examined using the diffraction data from a moderate-sized protein. A method to estimate a set of the large-modulus invariants, each corresponding to one of the eight 3PSIs, that has the largest \Delta\ values and relatively large structure-factor moduli between the native and derivative is suggested, which remarkably improves the accuracy, and thus a phasing procedure making full use of all eight 3PSIs is proposed.
Resumo:
电子邮箱nataliya.deyneka@uni-ulm.de
A new topological index for the Changchun institute of applied chemistry C-13 NMR information system
Resumo:
A method to assign a single number representation for each atom (node) in a molecular graph, Atomic IDentification (AID) number, is proposed based on the counts of weighted paths terminated on that atom. Then, a new topological index, Molecular IDentification (MID) number is developed from AID. The MID is tested systematically, over half a million of structures are examined, and MID shows high discrimination for various structural isomers. Thus it can be used for documentation in the Changchun Institute of Chemistry C-13 NMR information system.
Resumo:
A method for estimating the one-phase structure seminvariants (OPSSs) having values of 0 or pi has been proposed on the basis of the probabilistic theory of the three-phase structure invariants for a pair of isomorphous structures [Hauptman (1982). Acta Cryst. A38, 289-294]. The test calculations using error-free diffraction data of protein cytochrome c(550) and its PtCl42- derivative show that reliable estimates of a number of the OPSSs can be obtained. The reliability of the estimation increases with the increase of the differences between diffraction intensities of the native protein and its heavy-atom derivative. A means to estimate the parameters of the distribution from the diffraction ratio is suggested.
Resumo:
The estimate formulas for the two-phase structure seminvariants (TPSSs) in the presence of anomalous scattering are obtained from the estimate of the two-phase structure invariants [Hauptman (1982). Acta Cryst. A38, 632-641; Giacovazzo (1983). Acta Cryst.
Resumo:
A new algorithm for deriving canonical numbering of atoms in a molecular graph has been developed. Some graph invariants, such as node properties, degree (connectivity), topological path, the smallest node ring index, etc., are encoded together to partit