22 resultados para Industrial reconfiguration
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Czochralski (CZ) crystal growth process is a widely used technique in manufacturing of silicon crystals and other semiconductor materials. The ultimate goal of the IC industry is to have the highest quality substrates, which are free of point defect, impurities and micro defect clusters. The scale up of silicon wafer size from 200 mm to 300 mm requires large crucible size and more heat power. Transport phenomena in crystal growth processes are quite complex due to melt and gas flows that may be oscillatory and/or turbulent, coupled convection and radiation, impurities and dopant distributions, unsteady kinetics of the growth process, melt crystal interface dynamics, free surface and meniscus, stoichiometry in the case of compound materials. A global model has been developed to simulate the temperature distribution and melt flow in an 8-inch system. The present program features the fluid convection, magnetohydrodynamics, and radiation models. A multi-zone method is used to divide the Cz system into different zones, e.g., the melt, the crystal and the hot zone. For calculation of temperature distribution, the whole system inside the stainless chamber is considered. For the convective flow, only the melt is considered. The widely used zonal method divides the surface of the radiation enclosure into a number of zones, which has a uniform distribution of temperature, radiative properties and composition. The integro-differential equations for the radiative heat transfer are solved using the matrix inversion technique. The zonal method for radiative heat transfer is used in the growth chamber, which is confined by crystal surface, melt surface, heat shield, and pull chamber. Free surface and crystal/melt interface are tracked using adaptive grid generation. The competition between the thermocapillary convection induced by non-uniform temperature distributions on the free surface and the forced convection by the rotation of the crystal determines the interface shape, dopant distribution, and striation pattern. The temperature gradients on the free surface are influenced by the effects of the thermocapillary force on the free surface and the rotation of the crystal and the crucible.
Resumo:
IEECAS SKLLQG
Resumo:
Variation in dinoflagellate cyst assemblages through the last approximately 300 years was studied in two sediment cores, one from the heavily polluted Frierfjord, and one from the adjoining, relatively unpolluted Brevikfjord, in order to docu1ent possible dinoflagellate responses to pollution. Changes in the cyst-flora were compared with historical information on the development of industry and also with geochemistry of the sediments, reflecting aspects of pollution. In the Frierfjord core, increasing pollution was accompanied by a decrease in cyst concentration, possibly reflecting reduced production, at least of dinoflagellates, and a shift toward more heterotrophic species, possibly reflecting reduced light penetration in the euphotic zone, or increased production of prey for the heterotrophs. These trends seem to have reversed as pollution decreased after about 1975, suggesting that cyst assemblages contain signals that may prove useful for tracing the development of pollution. Cyst assemblages in the Brevikfjord core only showed minor changes.
Resumo:
Association for Computing Machinery, ACM; IEEE; IEEE Computer Society; SIGSOFT