60 resultados para Implant surface treatment
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The effects of electron beam surface hardening treatment on the microstructure and hardness of AISI D3 tool steel have been investigated in this paper. The results showed that the microstructure of the hardened layer consisted of martensite, a dispersion
Resumo:
The basic remelting and cladding tests with laminar plasma technology on metals have been conducted in order to demonstrate the possibility of the technology applied in material surface modification. The experimental results show that the properties of the modified layers of the cast iron surface can be improved notably by the remelting treatment and those of the stainless steel by the cladding treatment. The related results are also verified by microscopic studies such as scanning electron microscopic (SEM) observations, energy dispersive spectra (EDS) analysis and the Vickers hardness measurements of the surface modified layers.
Resumo:
Surface rapid solidification microstructures of AISI 321 austenitic stainless steel and 2024 aluminum alloy have been investigated by electron beam remelting process and optical microscopy observation. It is indicated that the morphologies of the melted layer of both stainless steel and aluminum alloy change dramatically compared to the original materials. Also, the microstructures were greatly refined after the electron beam irradiation.
Resumo:
The influence of mechanical polishing, chemo-mechanical polishing (CMP), as well as CMP and subsequent chemical etching on the properties of sapphire substrate surfaces has been studied. The sapphire substrates have been investigated by means of polarizing microscopy, atomic force microscopy (AFM). X-ray diffraction rocking curves (XRCs) and micro-Raman spectroscopy. The results show that CMP with subsequent chemically etching yields the best-quality sapphire substrate surfaces. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
To form low-resistance Ohmic contact to p-type GaN, InGaN/GaN multiple quantum well light emitting diode wafers are treated with boiled aqua regia prior to Ni/Au (5 nm/5 nm) film deposition. The surface morphology of wafers and the current-voltage characteristics of fabricated light emitting diode devices are investigated. It is shown that surface treatment with boiled aqua regia could effectively remove oxide from the surface of the p-GaN layer, and reveal defect-pits whose density is almost the same as the screw dislocation density estimated by x-ray rocking curve measurement. It suggests that the metal atoms of the Ni/Au transparent electrode of light emitting diode devices may diffuse into the p-GaN layer along threading dislocation lines and form additional leakage current channels. Therefore, the surface treatment time with boiled aqua regia should not be too long so as to avoid the increase of threading dislocation-induced leakage current and the degradation of electrical properties of light emitting diodes
Resumo:
Processing simulation is at the bottom of the coral technology of VM and is also difficult due to the complexity of mechanism and diversity of parameters. Previously much research has been mainly carried out on the geometrical simulation or physical simulation respectively. The aim of this paper is to study the processing simulation in laser surface treatment based on the mechanism, put forward the architecture of the whole processing simulation and give the models of the processing. As a result the data structure layers in the whole simulation is presented.
Resumo:
根据高能束对镀铬涂层及其界面强化机制的不同,镀铬/高能束表面复合技术可分为两类:高能束强化镀铬涂层复合技术和高能束预处理基体/镀铬复合技术.前者典型代表有激光表面强化或等离子体氮化/镀铬涂层;后者主要代表是激光预淬火基体/镀铬复合表面处理.综合阐述了上述3种典型的复合处理技术的原理、目的及实际综合效果;通过试验初步探讨了激光预淬火基体/镀铬复合技术延长镀铬身管寿命的主要机理.
Resumo:
Low-energy laser-heating techniques are widely used in engineering applications such as, thinfilm deposition, surface treatment, metal forming and micro-structural pattern formation. In this paper,under the conditions of ignoring the thermo-mechanical coupling, a numerical simulation on the spatialand temporal temperature distribution in a sheet metal produced by the laser beam scanning in virtue of thefinite element method is presented. Both the three-dimensional transient temperature field and thetemperature evolution as a function of heat penetrating depth in the metal sheet are calculated. Thetemperature dependence of material properties was taken into account. It was shown that, after taking thetemperature dependence of the material absorbance effect into consideration, the temperature change ratealong the scanning direction and the temperature maximum were both increased.
Resumo:
蓝宝石衬底是目前最为普遍的一种衬底材料,是生长GaN、Zno材料最常用的衬底。本文用光学显微镜、原子力显微镜(AFM)和高分辨X射线双晶衍射对蓝宝石衬底进行了分析测试,系统研究了经过机械抛光、化学机械抛光、化学腐蚀等表面处理对蓝宝石衬底表面性能的影响。结果表明经过化学机械抛光随后再经腐蚀后的蓝宝石衬底的表面性能最好。