562 resultados para INGAAS QUANTUM DOTS
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The effect of rapid thermal annealing on the InAs quantum dots (QDs) grown by atomic layer molecular beam epitaxy and capped with InGaAs layer has been investigated using transmission electron microscopy and photoluminescence (PL). Different from the previously reported results, no obvious blueshift of the PL emission of QDs is observed until the annealing temperature increases up to 800 degreesC. The size and shape of the QDs annealed at 750 degreesC have hardly changed indicating the relatively weak Ga/In interdiffusion, which is characterized by little blueshift of the PL peak of QDs. The QD size increases largely and a few large clusters can be observed after 800 degreesC RTA, implying the fast interdiffusion and the formation of InGaAs QDs. These results indicate that the delay of the blueshift of the PL peak of QDs is correlated with the abnormal interdiffusion process, which can be explained by two possible reasons: the reduction of excess-As-induced defects and the redistribution of In, Ga atoms around the InAs QDs resulted from the sub-monolayer deposition of InGaAs capping layer. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We have developed a new self-assembled quantum dot system where InGaAs dots are formed on an InAlAs wetting layer and embedded in the GaAs matrix. The structure is realized by special sample designation and demonstrated by low-temperature photoluminescence measurements. In contrast to the traditional InAs/GaAs quantum dots dominated by the ensemble effect, the temperature dependence of the photoluminescence of such a quantum dot structure behaves as decoupled quantum dots. This can be attributed to the enhanced potential confinement for the dots provided by a higher-energy barrier in the wetting layer.
Resumo:
We have fabricated a new self-assembled quantum dot system where InGaAs dots are formed on InAlAs wetting layer and embedded in GaAs matrix. The low-temperature photoluminescence and atomic force microscopy measurements confirm the realization of the structure. In contrast to traditional InAs/Ga(Al)As quantum dots, the temperature dependence of the photoluminescence of the dots in such a structure exhibits an electronically decoupled feature due to a higher energy level of the wetting layer which keeps the dots more isolated from each other. (C) 2001 Published by Elsevier Science B.V.
Resumo:
A systematic study of self-organized In0.5Ga0.5As quantum dots (QDs) and islands grown by molecular beam epitaxy on (100) and (n11) A/B GaAs substrates is given, where n varies from 1 to 5. Low-temperature photoluminescence results show that the properties of the dots have a strong dependence on the substrate orientation as revealed by atomic force microscopy, consistent with the differences in size, shape, and distribution of QDs on different substrates. From (100) to (111) surface, the photoluminescence peak position of dots on B surfaces is found to blueshift more than that on A surfaces. QDs are also formed on (511) A surface. The positional distribution of these dots exhibits a wavy shape, which is related to the corrugated structure of this surface. Two kinds of islands are formed on (111) A surface, but further work is needed to explain the mechanism of these islands. (C) 2001 American Vacuum Society.
Resumo:
The deposition of InxGa1-xAs (0.2 less than or equal to x less than or equal to 0.5) on (311)B GaAs surfaces using solid source molecular beam epitaxy (MBE) has been studied. Both AFM and photoluminescence emission showed that homogeneous quantum dots could be formed on (311)B GaAs surface when indium composition was around 0.4. Indium composition had a strong influence on the size uniformity and the lateral alignment of quantum dots. Compared with other surface orientation, (100) and (n11) A/B (n=1,2,3), photoluminescence measurement confirmed that (311)B surface is the most advantageous in fabricating uniform and dense quantum dots.
Resumo:
In this paper, InGaAs quantum dots with an adjusting InGaAlAs layer underneath are grown on (n 1 1)A/B (n = 2-5) and the reference (1 0 0) substrates by molecular beam epitaxy. Small and dense InGaAs quantum dots are formed on (1 0 0) and (n 1 1)B substrates. A comparative study by atomic force microscopy shows that the alignment and uniformity for InGaAs quantum dots are greatly improved on(5 1 1)B but deteriorated on (3 1 1)B surface, demonstrating the great influence of the buried InGaAlAs layer. There is an increase in photoluminescence intensity and a decrease in the full-width at half-maximum when n varies from 2 to 5. Quantum dots formed on (3 1 1)A and (5 1 1)A surfaces are large and random in distribution, and no emission from these dots can be detected. (C) 1999 Elsevier Science B.V. All rights reserved.
In composition dependence of lateral ordering in InGaAs quantum dots grown on (311)B GaAs substrates
Resumo:
Self-assembled InxGa1-xAs quantum dots (QDs) on (311)A/B GaAs surfaces have been grown by molecular beam epitaxy (MBE). Spontaneously ordering alignment of InxGa1-xAs with lower In content around 0.3 have been observed. The direction of alignment orientation of the QDs formation differs from the direction of misorientation of the (311)B surface, and is strongly dependent upon the In content x. The ordering alignment become significantly deteriorated as the In content is increased to above 0.5 or as the QDs are formed on (100) or (311)A substrates. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Self-assembled In_0.35Ga_0.65As/GaAs quantum dots with low indium content are grown under different growth temperature and investigated using contact atomic force microscopy(AFM). In order to obtain high density and high uniformityu of quantum dots, optimized conditions are concluded for MBE growth. Optimized growth condi-tions also compared with these of InAs/GaAs quantum dots. This will be very useful for InGaAs/GaAs QDs opto-electronic applications, such as quantum dots lasers and quantum dots infrared photodetectors.
Resumo:
Quantum dot infrared photodetectors (QDIP) are in the center of research interest nowadays. However the real QDIP is inferior to those predicted in theory, in which the dot density is much higher than those reported. Through optimizing the growth conditions, we realized the control of high-density quantum dot growth. This will be very useful for future QDIP development.
Resumo:
Variable-temperature photoluminescence (PL) spectra of Si-doped self-assembled InGaAs quantum dots (QDs) with and without GaAs cap layers were measured. Narrow and strong emission peak at 1075 nm and broad and weak peak at 1310 nm were observed for the buried and surface QDs at low temperature, respectively. As large as 210 meV redshift of the PL peak of the surface QDs with respect to that of the buried QDs is mainly due to the change of the strain around QDs before and after growth of the GaAs cap layer. Using the developed localized-state luminescence model, we quantitatively calculate the temperature dependence of PL peaks and integrated intensities of the two samples. The results reveal that there exists a large difference in microscopic mechanisms of PL thermal quenching between two samples. (c) 2005 American Institute of Physics.
Resumo:
A new self-assembled quantum dots system where InGaAs dots are formed on InAlAs wetting layer and embedded in GaAs matrix has been fabricated. The photoluminescence linewidth increases with increasing temperature, which is very different from normal In(Ga)As/GaAs quantum dots. The results are attributed to a higher energy of the wetting layer which breaks the carrier transfer channel between dots and keeps the dots more isolated from each other.
Resumo:
The theoretical analysis of intersubband optical transitions for InAs/ InGaAs quantum dots-in-a-well ( DWELL ) detectors are performed in the framework of effective-mass envelope- function theory. In contrast to InAs/ GaAs quantum dot (QD) structures, the calculated band structure of DWELL quantitatively confirms that an additional InGaAs quantum well effectively lowers the ground state of InAs QDs relative to the conduction-band edge of GaAs and enhances the confinement of electrons. By changing the doping level, the dominant optical transition can occur either between the bound states in the dots or from the ground state in the dots to bound states in the well, which corresponds to the far-infrared and long-wave infrared (LWIR ) peaks in the absorption spectra, respectively. Our calculated results also show that it is convenient to tailor the operating wavelength in the LWIR atmospheric window ( 8 - 12 mu m ) by adjusting the thickness of the InGaAs layer while keeping the size of the quantum dots fixed. Theoretical predictions agree well with the available experimental data. (c) 2005 American Institute of Physics.
Resumo:
We have investigated random telegraph noise in the photoluminescence from InGaAs quantum dots in GaAs. Dots switching among two and three levels have been measured. The experiments show that the switching InGaAs dots behave very similarly to switching InP dots in GaInP. but differently from the more commonly investigated colloidal dots. The switching is attributed to defects, and we show that the switching can be used as a monitor of the defect.
Resumo:
In this work, InAs quantum dots (QDs) grown on a linear graded InGaAs metamorphic buffer layer by molecular beam epitaxy have been investigated. The growth of the metamorphic buffer layers was carefully optimized, yielding a smooth surface with a minimum root mean square of roughness of less than 0.98 nm as measured by atomic force microscopy (AFM). InAs QDs were then grown on the buffer layers, and their emission wavelength at room-temperature is 1.49 mu m as measured by photoluminescence (PL). The effects of post-growth rapid thermal annealing (RTA) on the optical properties of the InAs QDs were investigated. After the RTA, the PL peak of the QDs was blue-shifted and the full width at half maximum decreased.
Resumo:
Both the peak position and linewidth in the photoluminescence spectrum of the InAs/GaAs quantum dots usually vary in an anomalous way with increasing temperature. Such anomalous optical behaviour is eliminated by inserting an In0.2Ga0.8As quantum well below the quantum dot layer in molecular beam epitaxy. The insensitivity of the photoluminescence spectra to temperature is explained in terms of the effective carrier redistribution between quantum dots through the In0.2Ga0.8As quantum well.