133 resultados para Hot-wire, dissipazione, turbolenza

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycrystalline silicon thin films were prepared by hot-wire chemical vapor deposition ( HWCVD) on glass at 250 degreesC with W or Ta wire as the catalyzers. The structual and optoelectronic properties as functions of the filament temperature, deposition pressure and the filament-substrate distance were studied, and the optimized polycrystalline silicon thin films were obtained with X-c > 90 % ( X-c denotes the crystalline ratio of the film), crystal grain size about 30-40nm, R-d approximate to 0.8nm/s, sigma(d) about 10(-7) - 10(-6) Omega(-1) cm(-1), Ea(a) approximate to 0.5eV and E-opt less than or equal to 1.3eV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tungsten wires were introduced into a plasma-enhanced chemical vapor deposition (PECVD) system as a catalyzer: we name this technique 'hot-wire-assisted PECVD' (HW-PECVD). Under constant deposition pressure (p(g)), gas flow ratio and catalyzer position, the effects of the hot wire temperature (T-f) on the structural properties of the poly-Si films have been characterized by X-ray diffraction (XRD), Raman scattering and Fourier-transform infrared (FTIR) spectroscopy. Compared with conventional PECVD, the grain size, crystalline volume fraction (X-e) and deposition rate were all enhanced when a high T-f was used. The best poly-Si film exhibits a preferential (220) orientation, with a full width at half-maximum (FWHM) of 0.2 degrees. The Si-Si TO peak of the Raman scattering spectrum is located at 519.8 cm(-1) with a FWHM of 7.1 cm(-1). The X-c is 0.93. These improvements are mainly the result of promotion of the dissociation of SiH4 and an increase in the atomic H concentration in the gas phase. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Undoped hydrogenated microcrystalline silicon (mu c-Si:H) thin films were prepared at low temperature by hot wire chemical vapor deposition (HWCVD). Microstructures of the mu c-Si:H films with different H-2/SiH4 ratios and deposition pressures have been characterized by infrared spectroscopy X-ray diffraction (XRD), Raman scattering, Fourier transform (FTIR), cross-sectional transmission electron microscopy (TEM) and small angle X-ray scattering (SAX). The crystallization of silicon thin film was enhanced by hydrogen dilution and deposition pressure. The TEM result shows the columnar growth of mu c-Si:H thin films. An initial microcrystalline Si layer on the glass substrate, instead of the amorphous layer commonly observed in plasma enhanced chemical vapor deposition (PECVD), was observed from TEM and backside incident Raman spectra. The SAXS data indicate an enhancement of the mass density of mu c-Si:H films by hydrogen dilution. Finally, combining the FTIR data with the SAXS experiment suggests that the Si--H bonds in mu c-Si:H and in polycrystalline Si thin films are located at the grain boundaries. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tungsten wires were introduced into a plasma-enhanced chemical vapor deposition (PECVD) system as a catalyzer: we name this technique 'hot-wire-assisted PECVD' (HW-PECVD). Under constant deposition pressure (p(g)), gas flow ratio and catalyzer position, the effects of the hot wire temperature (T-f) on the structural properties of the poly-Si films have been characterized by X-ray diffraction (XRD), Raman scattering and Fourier-transform infrared (FTIR) spectroscopy. Compared with conventional PECVD, the grain size, crystalline volume fraction (X-e) and deposition rate were all enhanced when a high T-f was used. The best poly-Si film exhibits a preferential (220) orientation, with a full width at half-maximum (FWHM) of 0.2 degrees. The Si-Si TO peak of the Raman scattering spectrum is located at 519.8 cm(-1) with a FWHM of 7.1 cm(-1). The X-c is 0.93. These improvements are mainly the result of promotion of the dissociation of SiH4 and an increase in the atomic H concentration in the gas phase. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A temperature-controlled pool boiling (TCPB) device was developed to perform pool boiling heat transfer studies at both normal gravity on Earth and microgravity in the drop tower Beijing and aboard a Chinese recovery satellite. Two platinum wires of 60 ?m in diameter were simultaneously used as heaters and thermometers. The lengths were 30 mm and 40 mm, respectively. The ends of wires were soldered with copper poles to provide low resistance paths for the electric current. The heater resistance, and thus the heater temperature, was kept constant by a feedback circuit similar to that used in constant-temperature hot-wire anemometry. The fluid was R113 at 0.1 Mpa and subcooled by 30 ?C nominally for all cases. The results of the experiments at normal gravity were presented. Four modes, namely single-phase convection, nucleate boiling, transition two-mode boiling, and film boiling were observed. A few data obtained from several preliminary experiments at microgravity in the drop tower Beijing were also presented. A slight increase of the heat flux was obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of deposition gas pressure and H-2 dilution ratio (H-2/SiH4+CH4+H-2), generally considered two of dominant parameters determining crystallinity in beta-SiC thin films prepared by catalytic chemical vapor deposition (Cat-CVD), often called hot-wire CVD method, on the films properties have been systematically studied. As deposition gas pressure increase from 40 to 1000 Pa, the crystallinity of the films is improved. From the study of H-2 dilution ratio, it is considered that H-2 plays a role as etching gas and modulating the phases in beta-SiC thin films. On the basis of the study on the parameters, nanocrystalline beta-SiC films were successfully synthesized on Si substrate at a low temperature of 300degreesC. The Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD) spectra show formation of beta-SiC. Moreover, according to Sherrer equation, the average grain size of the films estimated is in nanometer-size. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrogen dilution profiling (HDP) technique has been developed to improve the quality and the crystalline uniformity in the growth direction of mu c-Si:H thin films prepared by hot-wire chemical-vapor deposition. The high H dilution in the initial growth stage reduces the amorphous transition layer from 30-50 to less than 10 nm. The uniformity of crystalline content X-c in the growth direction was much improved by the proper design of hydrogen dilution profiling which effectively controls the nonuniform transition region of Xc from 300 to less than 30 nm. Furthermore, the HDP approach restrains the formation of microvoids in mu c-Si: H thin films with a high Xc and enhances the compactness of the film. As a result the stability of mu c-Si: H thin films by HDP against the oxygen diffusion, as well as the electrical property, is much improved. (c) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructures of hydrogenated microcrystalline silicon (tic-Si: H) thin films, prepared by plasma-enhanced chemical vapor deposition (PECVD), hot wire CVD(HWCVD) and plasma assisted HWCVD (PE-HWCVD), have been analyzed by the small angle x-ray scattering(SAXS) measurement. The SAXS data show that the microstructures of the μ c-Si: H films display different characteristics for different deposition techniques. For films deposited by PECVD, the volume fraction of micro-voids and mean size are smaller than those in HWCVD sample. Aided by suitable ion-bombardment, PE-HWCVD samples show a more compact structure than the HWCVD sample. The microstructure parameters of the μ c-Si: H thin films deposited by two-steps HWCVD and PE-HWCVD with Ar ions are evidently improved. The result of 45° tilting SAXS measurement indicates that the distribution of micro-voids in the film is anisotropic. The Fouriertransform infrared spectra confirm the SAXS data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microcrystalline silicon thin films at different growth stages were prepared by hot wire chemical vapor deposition. Atomic force microscopy has been applied to investigate the evolution of surface topography of these films. According to the fractal analysis I it was found that, the growth of Si film deposited on glass substrate is the zero-diffused stochastic deposition; while for the film on Si substrate, it is the finite diffused deposition on the initial growth stage, and transforms to the zero-diffused stochastic deposition when the film thickness reaches a certain value. The film thickness dependence of island density shows that a maximum of island density appears at the critical film thickness for both substrates. The data of Raman spectra approve that, on the glass substrate, the a-Si: H/mu c-Si:H transition is related to the critical film thickness. Different substrate materials directly affect the surface diffusion ability of radicals, resulting in the difference of growth modes on the earlier growth stage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel hydrogen dilution profiling (HDP) technique was developed to improve the uniformity in the growth direction of mu c-Si:H thin films prepared by hot wire chemical vapor deposition (HWCVD). It was found that the high H dilution ratio reduces the incubation layer from 30 nm to less than 10 nm. A proper design of hydrogen dilution profiling improves the uniformity of crystalline content, X-c, in the growth direction and restrains the formation of micro-voids as well. As a result the compactness of mu c-Si:H films with a high crystalline content is enhanced and the stability of mu c-Si:H thin film against the oxygen diffusion is much improved. Meanwhile the HDP mu c-Si:H films exhibit the low defect states. The high nucleation density from high hydrogen dilution at early stage is a critical parameter to improve the quality of mu c-Si:H films. (c) 2006 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on Stefan-Boltzman and Lambert theorems, the radiation energy distribution on substrate (REDS) from catalyzer with parallel filament geometry has been simulated by variation of filament and system layout in hot-wire chemical vapor deposition. The REDS uniformity is sensitive to the distance between filament and substrate d(f-s) when d(f-s) less than or equal to 4 cm. As d(f-s) > 4 cm, the REDS uniformity is independent of d(f-s) and is mainly determined by filament number and filament separation. Two-dimensional calculation shows that the REDS uniformity is limited by temperature decay at filament edges. The simulation data are in good agreement with experiments. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel hydrogen dilution profiling (HDP) technique was developed to improve the uniformity in the growth direction of mu c-Si:H thin films prepared by hot wire chemical vapor deposition (HWCVD). It was found that the high H dilution ratio reduces the incubation layer from 30 nm to less than 10 nm. A proper design of hydrogen dilution profiling improves the uniformity of crystalline content, X-c, in the growth direction and restrains the formation of micro-voids as well. As a result the compactness of mu c-Si:H films with a high crystalline content is enhanced and the stability of mu c-Si:H thin film against the oxygen diffusion is much improved. Meanwhile the HDP mu c-Si:H films exhibit the low defect states. The high nucleation density from high hydrogen dilution at early stage is a critical parameter to improve the quality of mu c-Si:H films. (c) 2006 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Si thin films with different structures were deposited by plasma enhanced chemical vapor deposition (PECVD), and characterized via Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The passivation effect of such different Si thin films on crystalline Si surface was investigated by minority carrier lifetime measurement via a method, called microwave photoconductive decay (mu PCD), for the application in HIT (heterojunction with intrinsic thin-layer) solar cells. The results show that amorphous silicon (a-Si:H) has a better passivation effect due to its relative higher H content, compared with microcrystalline (mu c-Si) silicon and nanocrystalline silicon (nc-Si). Further, it was found that H atoms in the form of Si-H bonds are more preferred than those in the form of Si-H-2 bonds to passivate the crystalline Si surface. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Device-quality a-Si:H films were prepared by glow discharge CVD with pure or H-diluted silane as well as by hot-wire CVD. The hydrogen content was varied from similar to 2 to 15 at. %. The Si-H bond absorption and its light-soaking-induced changes were studied by IR and differential IR absorption spectroscopes. The results indicate that the more stable sample exhibits an increase of the absorption at wave number similar to 2000 cm(-1), and the less stable one exhibits a decrease at similar to 2040 cm(-1) and an increase at similar to 1880 cm(-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on Stefan-Boltzman and Lambert theorems, the radiation energy distribution on substrate (REDS) from catalyzer with parallel filament geometry has been simulated by variation of filament and system layout in hot-wire chemical vapor deposition. The REDS uniformity is sensitive to the distance between filament and substrate d(f-s) when d(f-s) less than or equal to 4 cm. As d(f-s) > 4 cm, the REDS uniformity is independent of d(f-s) and is mainly determined by filament number and filament separation. Two-dimensional calculation shows that the REDS uniformity is limited by temperature decay at filament edges. The simulation data are in good agreement with experiments. (C) 2003 Elsevier Science B.V. All rights reserved.