8 resultados para Health Sciences, Public Health|Education, Technology of
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
This study is one of the very few investigating the dioxin body burden of a group of child-bearing-aged women at an electronic waste (e-waste) recycling site (Taizhou, Zhejiang Province) (24 +/- 2.83 years of age, 40% were primiparae) and a reference site (Lin'an city, Zhejiang Province, about 245 km away from Taizhou) (24 +/- 2.35 years of age, 100% were primiparae) in China. Five sets of samples (each set consisted of human milk, placenta, and hair) were collected from each site. Body burdens of people from the e-waste processing site (human milk, 21.02 +/- 13.81 pg WHO-TEQ(1998/g) fat (World Health Organization toxic equivalency 1998); placenta, 31.15 +/- 15.67 pg WHO-TEQ(1998/g) fat; hair, 33.82 +/- 17.74 pg WHO-TEQ(1998/g) dry wt) showed significantly higher levels of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurnas (PCDD/Fs) than those from the reference site (human milk, 9.35 +/- 7.39 pg WHO-TEQ(1998/g) fat, placenta, 11.91 +/- 7.05 pg WHO-TEQ(1998/g) fat; hair, 5.59 +/- 4.36 pg WHO-TEQ(1998/g) dry wt) and were comparatively higher than other studies. The difference between the two sites was due to e-waste recycling operations, for example, open burning, which led to high background levels. Moreover, mothers from the e-waste recycling site consumed more foods of animal origin. The estimated daily intake of PCDD/Fs within 6 months by breast-fed infants from the e-waste processing site was 2 times higher than that from the reference site. Both values exceeded the WHO tolerable daily intake for adults by at least 25 and 11 times, respectively. Our results implicated that e-waste recycling operations cause prominent PCDD/F levels in the environment and in humans. The elevated body burden may have health implications for the next generation.
Resumo:
The effect of implanting nitrogen into buried oxide on the top gate oxide hardness against total irradiation does has been investigated with three nitrogen implantation doses (8 x 10(15), 2 x 10(16) and 1 x 10(17) cm(-2)) for partially depleted SOI PMOSFET. The experimental results reveal the trend of negative shift of the threshold voltages of the studied transistors with the increase of nitrogen implantation dose before irradiation. After the irradiation with a total dose of 5 x 10(5) rad(Si) under a positive gate voltage of 2V, the threshold voltage shift of the transistors corresponding to the nitrogen implantation dose 8 x 10(15) cm(-2) is smaller than that of the transistors without implantation. However, when the implantation dose reaches 2 x 10(16) and 1 x 10(17) cm(-2), for the majority of the tested transistors, their top gate oxide was badly damaged due to irradiation. In addition, the radiation also causes damage to the body-drain junctions of the transistors with the gate oxide damaged. All the results can be interpreted by tracing back to the nitrogen implantation damage to the crystal lattices in the top silicon.
Resumo:
The effects, caused by the process of the implantation of nitrogen in the buried oxide layer of SIMOX wafer, on the characteristics of partially depleted silicon-on-insulator nMOSFET have been studied. The experimental results show that the channel electron mobilities of the devices fabricated on the SIMON (separation by implanted oxygen and nitrogen) wafers are lower than those of the devices made on the SIMOX (separation by implanted oxygen) wafers. The devices corresponding to the lowest implantation dose have the lowest mobility within the range of the implantation dose given in this paper. The value of the channel electron mobility rises slightly and tends to a limit when the implantation dose becomes greater. This is explained in terms of the rough Si/SiO2 interface due to the process of implantation of nitrogen. The increasing negative shifts of the threshold voltages for the devices fabricated on the SIMON wafers are also observed with the increase of implanting dose of nitrogen. However, for the devices fabricated on the SIMON wafers with the lowest dose of implanted nitrogen in this paper, their threshold voltages are slightly larger on the average than those prepared on the SIMOX wafers. The shifts are considered to be due to the increment of the fixed oxide charge in SiO2 layer and the change of the density of the interface-trapped charge with the value and distribution included. In particular, the devices fabricated on the SIMON wafers show a weakened kink effect, compared to the ones made on the SIMOX wafers.
Resumo:
Back Light Unit (BLU) and Color Filter are the two key components for the perfect color display of Liquid Crystal Display (LCD) device. LCD can not light actively itself, so a form of illumination, Back Light Unit is needed for its display. The color filter which consists of RGB primary colors, is used to generate three basic colors for LCD display. Traditional CCFL back light source has several disadvantages, while LED back light technology makes LCD obtain quite higher display quality than the CCFL back light. LCD device based on LED back light owns promoted efficiency of display. Moreover it can generate color gamut above 100% of the NTSC specification. Especially, we put forward an idea of Color Filter-Less technology that we design a film which is patterned of red and green emitting phosphors, then make it be excited by a blue light LED panel we fabricate, for its special emitting mechanism, this film can emit RGB basic color, therefore replace the color filter of LCD device. This frame typically benefits for lighting uniformity and provide pretty high light utilization ratio. Also simplifies back light structure thus cut down the expenses.
Resumo:
Alpha olefins are mainly produced from paraffin cracking in China, but their quality is not good because of bad quality of cracking feed and outdated technology. The technology of paraffin once-through cracking, paraffin recycle cracking of removing the heavy fraction after wax vaporizing and that of removing the heavy fraction before wax vaporizing were investigated in this paper. It was found that the technology of paraffin recycle cracking of removing the heavy fraction before wax vaporizing is new and better under the same operating conditions. Using hard paraffin (mp 54-56 degrees C) as feed, the high-quality alpha olefins products (C-5-C-21) containing more than 97 wt% of olefins and more than 88 wt% of alpha olefins are produced under optimum process conditions, which are a steam to paraffin ratio of 15 wt%, process temperature of 600 degrees C, low hydrocarbon partial pressure and residence time of 2 s. In addition, with the technology of the second injecting steam in ethylene cracking used in paraffin cracking, producing coke in paraffin cracking furnace has been markedly reduced.