196 resultados para Harmonic Function
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The first-passage time of Duffing oscillator under combined harmonic and white-noise excitations is studied. The equation of motion of the system is first reduced to a set of averaged Ito stochastic differential equations by using the stochastic averaging method. Then, a backward Kolmogorov equation governing the conditional reliability function and a set of generalized Pontryagin equations governing the conditional moments of first-passage time are established. Finally, the conditional reliability function, and the conditional probability density and moments of first-passage time are obtained by solving the backward Kolmogorov equation and generalized Pontryagin equations with suitable initial and boundary conditions. Numerical results for two resonant cases with several sets of parameter values are obtained and the analytical results are verified by using those from digital simulation.
Resumo:
A procedure for designing the optimal bounded control of strongly non-linear oscillators under combined harmonic and white-noise excitations for minimizing their first-passage failure is proposed. First, a stochastic averaging method for strongly non-linear oscillators under combined harmonic and white-noise excitations using generalized harmonic functions is introduced. Then, the dynamical programming equations and their boundary and final time conditions for the control problems of maximizing reliability and of maximizing mean first-passage time are formulated from the averaged Ito equations by using the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraint. Finally, the conditional reliability function, the conditional probability density and mean of the first-passage time of the optimally controlled system are obtained from solving the backward Kolmogorov equation and Pontryagin equation. An example is given to illustrate the proposed procedure and the results obtained are verified by using those from digital simulation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
A nonequilibrium Green's-function formalism is employed to study the time-dependent transport through resonant-tunneling structures. With this formalism, we derive a time-dependent Landauer-Buttiker formula that guarantees current conservation and gauge invariance. Furthermore, we apply the formula to calculate the response behaviors of the resonant-tunneling structures in the presence of rectangular-pulse and harmonic-modulation fields. The results show that the displacement current plays the role of retarding the tunneling current.
Resumo:
A novel ameliorated phase generated carrier (PGC) demodulation algorithm based on arctangent function and differential-self-multiplying (DSM) is proposed in this paper. The harmonic distortion due to nonlinearity and the stability with light intensity disturbance (LID) are investigated both theoretically and experimentally. The nonlinearity of the PGC demodulation algorithm has been analyzed and an analytical expression of the total-harmonic-distortion (THD) has been derived. Experimental results have confirmed the low harmonic distortion of the ameliorated PGC algorithm as expected by the theoretical analysis. Compared with the traditional PGC-arctan and PGC-DCM algorithm, the ameliorated PGC algorithm has a much lower THD as well as a better signal-to-noise-and-distortion (SINAD). A THD of below 0.1% and a SINAD of 60 dB have been achieved with PGC modulation depth (value) ranges from 1.5 to 3.5 rad. The stability performance with LID has also been studied. The ameliorated PGC algorithm has a much higher stability than the PGC-DCM algorithm. It can keep stable operations with LID depth as large as 26.5 dB and LID frequency as high as 1 kHz. The system employing the ameliorated PGC demodulation algorithm has a minimum detectable phase shift of 5 mu rad/root Hz @ 1 kHz, a large dynamic range of 120 dB @ 100 Hz, and a high linearity of better than 99.99%.
Resumo:
The density function theory was used to calculate the potential energy surface for the decomposition of CF3OF. The geometries, vibrational frequencies and energies of all stationary points were obtained. The calculated harmonic frequencies agreed well with the experimental ones. Three decomposition channels of CF3OF were studied. The calculated reaction enthalpy (29.85 kcal/mol) of the elimination reaction CF3OF --> CF2O + F-2 was in good agreement with the experimental value (27.7 kcal/mol). The O-F bond of CF3OF is broken easily by comparing the energies, while the decomposition channel to yield the CF30 and F radicals is the main reaction path. (C) 2002 Published by Elsevier Science B.V.
Resumo:
A new area function is introduced and applied to a Berkovich tip in order to characterize the contact projected area between an indenter and indented material. The function can be related directly to tip-rounding, thereby having obviously physical meaning. Nanoindentation experiments are performed on a commercial Nano Indenter XPsystem. The other two area functions introduced by Oliver and Pharr and by Thurn and Cook respectively are involved in this paper for comparison. By comparison from experimental results among different area functions, the indenter tip described by the proposed area function here is very close to the experimental indenter.
Resumo:
The optimal bounded control of quasi-integrable Hamiltonian systems with wide-band random excitation for minimizing their first-passage failure is investigated. First, a stochastic averaging method for multi-degrees-of-freedom (MDOF) strongly nonlinear quasi-integrable Hamiltonian systems with wide-band stationary random excitations using generalized harmonic functions is proposed. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximizinig reliability and maximizing mean first-passage time are formulated based on the averaged It$\ddot{\rm o}$ equations by applying the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraints. The relationship between the dynamical programming equations and the backward Kolmogorov equation for the conditional reliability function and the Pontryagin equation for the conditional mean first-passage time of optimally controlled system is discussed. Finally, the conditional reliability function, the conditional probability density and mean of first-passage time of an optimally controlled system are obtained by solving the backward Kolmogorov equation and Pontryagin equation. The application of the proposed procedure and effectiveness of control strategy are illustrated with an example.
Resumo:
Dynamic function of damage is the key to the problem of damage evolution of solids. In order to understand it, one must understand its mesoscopic mechanisms and macroscopic formulation. In terms of evolution equation of microdamage and damage moment, a dynamic function of damage is strictly defined. The mesoscopic mechanism underlying self-closed damage evolution law is investigated by means of double damage moments. Numerical results of damage evolution demonstrate some common features for various microdamage dynamics. Then, the dynamic function of damage is applied to inhomogeneous damage field. In this case, damage evolution rate is no longer equal to the dynamic function of damage. It is found that the criterion for damage localization is closely related to compound damage. Finally, an inversion of damage evolution to the dynamic function of damage is proposed.
Resumo:
表面技术能够显著提高材料功能而成为工程和产品设计的重要组成部分, 但前提是表面技术必须具有可设计性。为此, 需要开拓和发展表面组合加工技术, 进行创新。该技术的内涵体现了新材料与新技术、基础研究与产业化有机结合的特点, 具有重要的价值和广阔的前景。
Resumo:
Barium-functionalized multiwalled carbon nanotube yarns were fabricated by drawing and twisting multiwalled carbon nanotube forests through a solution containing barium nitrate. After heat activation under vacuum, the functionalized yarns were enriched in barium oxide due to the high surface-to-volume ratio of the nanotubes. The cathodes exhibited good thermionic properties, with a work function as low as 1.73-2.06 eV and thermionic current density that exceeded 185 mA/cm(2) in a field of 850 V/5 mm at 1317 K. The barium-functionalized yarns had high tensile strength of up to 420 MPa and retained strength of similar to 250 MPa after a 2 h activation process. (C) 2008 American Institute of Physics.
Resumo:
It is shown that for the screened Coulomb potential and isotropic harmonic oscillator, there exists an infinite number of closed orbits for suitable angular momentum values. At the aphelion (perihelion) points of classical orbits, an extended Runge-Lenz vector for the screened Coulomb potential and an extended quadrupole tensor for the screened isotropic harmonic oscillator are still conserved. For the screened two-dimensional (2D) Coulomb potential and isotropic harmonic oscillator, the dynamical symmetries SO3 and SU(2) are still preserved at the aphelion (perihelion) points of classical orbits, respectively. For the screened 3D Coulomb potential, the dynamical symmetry SO4 is also preserved at the aphelion (perihelion) points of classical orbits. But for the screened 3D isotropic harmonic oscillator, the dynamical symmetry SU(2) is only preserved at the aphelion (perihelion) points of classical orbits in the eigencoordinate system. For the screened Coulomb potential and isotropic harmonic oscillator, only the energy (but not angular momentum) raising and lowering operators can be constructed from a factorization of the radial Schrodinger equation.
Resumo:
Semi-weight function method is developed to solve the plane problem of two bonded dissimilar materials containing a crack along the bond. From equilibrium equation, stress and strain relationship, conditions of continuity across interface and free crack surface, the stress and displacement fields were obtained. The eigenvalue of these fields is lambda. Semi-weight functions were obtained as virtual displacement and stress fields with eigenvalue-lambda. Integral expression of fracture parameters, K-I and K-II, were obtained from reciprocal work theorem with semi-weight functions and approximate displacement and stress values on any integral path around crack tip. The calculation results of applications show that the semi-weight function method is a simple, convenient and high precision calculation method.
Resumo:
This paper considers the chaos synchronization of the modified Chua's circuit with x vertical bar x vertical bar function. We firstly show that a couple of the modified Chua systems with different parameters and initial conditions can be synchronized using active control when the values of parameters both in drive system and response system are known aforehand. Furthermore, based on Lyapunov stability theory we propose an adaptive active control approach to make the states of two identical Chua systems with unknown constant parameters asymptotically synchronized. Moreover the designed controller is independent of those unknown parameters. Numerical simulations are given to validate the proposed synchronization approach.
Resumo:
Based upon the spatially inhomogeneous Boltzmann equation in two-term approximation coupled with electromagnetic and fluid model analysis for the recently developed inductively coupled plasma sources, a self-consistent electron kinetic model is developed. The electron distribution function, spatial distributions of the electron density and ionization rate are calculated and discussed.
Resumo:
Real-life structures often possess piecewise stiffness because of clearances or interference between subassemblies. Such an aspect can alter a system's fundamental free vibration response and leads to complex mode interaction. The free vibration behaviour of an L-shaped beam with a limit stop is analyzed by using the frequency response function and the incremental harmonic balance method. The presence of multiple internal resonances, which involve interactions among the first five modes and are extremely complex, have been discovered by including higher harmonics in the analysis. The results show that mode interaction may occur if the higher harmonics of a vibration mode are close to the natural frequency of a higher mode. The conditions for the existence of internal resonance are explored, and it is shown that a prerequisite is the presence of bifurcation points in the form of intersecting backbone curves. A method to compute such intersections by using only one harmonic in the free vibration solution is proposed. (C) 1996 Academic Press Limited