17 resultados para Habitat Specialization
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
物种共存机制一直是群落生态学研究的核心内容。解释物种共存的假说很多,近年来最引人注目的是生态位分化假说和群落中性理论。这两种理论对群落内物种共存的相对重要性是目前群落生态学研究的热点。国际上这方面的研究基本集中在热带森林大样地内,而针对亚热带森林大样地的相关研究却非常少见。本文以浙江古田山24公顷常绿阔叶林永久固定监测样地第一次调查数据为基础,研究样地内木本植物与生境关联和与地形因子梯度相关,目的在于探讨物种生境生态位分化在亚热带常绿阔叶林内物种多样性维持中的作用,也为了解决当前物种生境关联相关研究中的一些不足之处。 本研究首先采用Torus转换检验分析古田山样地内90种常见木本植物与5类生境关联,结果表明有75种(83.3%)至少与一类生境类型显著相关,说明大部分亚热带森林群落内物种具有生境特化的特性。与CTFS全球大样地类似研究结果相比,古田山样地内生境特化的物种比例更高,这与古田山样地复杂的地形条件密切相关。通过本研究,证明地形条件越复杂,物种特化比例越高的趋势确实存在。在古田山样地,虽然83.3%的物种有生境特化的特性,但生境特化没有排他性,即并不完全排斥其他生境,在非最适生境也能稳定与其他物种共存。根据本研究与生境负相关的平均物种数与被检测的物种比例估算,古田山样地内生境异质性对物种多样性维持的贡献率约为19.6%,说明物种生境特化对于物种共存有一定的作用,但贡献并不大,除了生境异质性,仍有其他因素决定物种共存。 目前有关物种生境关联的研究都假设同一物种的个体对于生境偏好一致,不管胸径大小是否相同,很少有人研究不同生长阶段生境偏好的变化。本研究利用Torus转换检验比较样地内60种常见木本植物在3个生活史阶段(幼苗阶段、小树阶段和成熟阶段)与5类生境关联的变化,结果表明大部分物种在其幼苗和小树阶段的生境偏好比较一致,但成熟阶段与前两个阶段差别比较大,说明物种在生活史不同阶段的生境偏好可能发生改变。 由于生境划分没有统一的标准,不同学者用不同的方法划分生境类型和数量,主观性很大,造成不同研究地点、不同研究者之间的研究结果可比性差。本研究尝试利用直接梯度分析方法重新分析物种空间分布与地形梯度相关,用以代替生境关联分析。利用CCA分析检验样地内90种常见木本植物与4种地形因子梯度(海拔、凹凸度、坡度和坡向)的相关情况,发现有76个(84%)物种的空间分布与地形梯度相关,说明大部分物种具有沿地形因子梯度分布的特性。4种地形因子梯度变化对90个物种空间分布的解释量约为20%,说明地形异质性对于物种共存有一定作用,但贡献并不大。对生境关联分析和直接梯度法分析结果进行比较,两种方法分析结果一致,得到的结论也一致。直接梯度分析方法可以避免生境划分对研究结果的影响,是今后类似研究中值得采纳的方法。 本研究的结果表明地形异质性引起的生态位分化在古田山样地群落内物种多样性维持中起一定的作用,但贡献不大,因此需要更深入地研究其他环境因素引起的生态位分化在物种多样性维持中的作用,同时也需要进一步研究中性过程在物种多样性维持中的作用,以更全面地探讨生态位分化假说和中性理论在亚热带常绿阔叶林内物种共存的相对重要性。
Do clonal growth form and habitat origin affect resource-induced plasticity in Tibetan alpine herbs?
Resumo:
The greatest concentration of Chinese Galliformes occurs in the Trans-Himalayas. We selected 4 northwestern Yunnan counties (Lijiang, Shangri-la, Deqin, and Weixi) in the Trans-Himalayas to assess the conservation status of 9 gallinaceous forest birds. We
Resumo:
Pheromones are chemical cues released and sensed by individuals of the same species, which are of major importance in regulating reproductive and social behaviors of mammals. Generally, they are detected by the vomeronasal system (VNS). Here, we first investigated and compared an essential genetic component of vomeronasal chemoreception, that is, TRPC2 gene, of four marine mammals varying the degree of aquatic specialization and related terrestrial species in order to provide insights into the evolution of pheromonal olfaction in the mammalian transition from land to water. Our results based on sequence characterizations and evolutionary analyses, for the first time, show the evidence for the ancestral impairment of vomeronasal pheromone signal transduction pathway in fully aquatic cetaceans, supporting a reduced or absent dependence on olfaction as a result of the complete adaptation to the marine habitat, whereas the amphibious California sea lion was found to have a putatively functional TRPC2 gene, which is still under strong selective pressures, reflecting the reliance of terrestrial environment on chemical recognition among the semiadapted marine mammals. Interestingly, our study found that, unlike that of the California sea lion, TRPC2 genes of the harbor seal and the river otter, both of which are also semiaquatic, are pseudogenes. Our data suggest that other unknown selective pressures or sensory modalities might have promoted the independent absence of a functional VNS in these two species. In this respect, the evolution of pheromonal olfaction in marine mammals appears to be more complex and confusing than has been previously thought. Our study makes a useful contribution to the current understanding of the evolution of pheromone perception of mammals in response to selective pressures from an aquatic environment.
Resumo:
Habitat use by wintering Ruddy Shelduck (Tadorna ferruginea) in Lijiang Lashihai Lake of southwest China was studied from 1 November 1999 to 29 April 2000. We divided habitats into five types-deep water, shallow water, mudflat, grassland and farmland. Shallow water and grassland, with rich food and easily accessible water, were preferred by wintering Ruddy Shelducks, Farmland was preferred in mid-winter but avoided in early winter and late winter. Even in mid-winter, the feeding Ruddy Shelduck on farmland were not equally distributed in fields and preferred wet fields (just irrigated) and avoided dry fields. In dry fields, the distances to water sources had great impact on the feeding distribution. Mudflats were only selected in later winter, coinciding with the growth of water-weeds. Deep-water areas were always avoided. Prohibition of human disturbance and retaining shallow water areas and grassland are important measures to mitigate conflict between Ruddy Sheldruck and local people.
Resumo:
Leptobrachium ailaonicum is a vulnerable anuran restricted to a patchy distribution associated with small mountain streams surrounded by forested slopes at mid-elevations (approximately 2000-2600 m) in the subtropical Mount Wuliang and Mount Ailao ranges in southwest China (Yunnan Province) and northern Vietnam. Given high habitat specificity and lack of suitable habitat in lower elevations between these ranges, we hypothesized limited gene flow between populations throughout its range. We used two mitochondrial genes to construct a phylogeographic pattern within this species in order to test our hypothesis. We also examined whether this phylogeographic pattern is a response to past geological events and/or climatic oscillations. A total of 1989 base pairs were obtained from 81 individuals of nine populations yielding 51 unique haplotypes. Both Bayesian and maximum parsimony phylogenetic analyses revealed four deeply divergent and reciprocally monophyletic mtDNA lineages that approximately correspond to four geographical regions separated by deep river valleys. These results suggest a long history of allopatric separation by vicariance. The distinct geographic distributions of four major clades and the estimated divergence time suggest spatial and temporal separations that coincide with climatic and paleogeographic changes following the orogeny and uplift of Mount Ailao during the late Miocene to mid Pliocene in southwest China. At the southern distribution, the presence of two sympatric yet differentiated clades in two areas are interpreted as a result of secondary contact between previously allopatric populations during cooler Pleistocene glacial cycles. Analysis of molecular variance indicates that most of the observed genetic variation occurs among the four regions implying long-term interruption of maternal gene flow, suggesting that L ailaonicum may represent more than one distinct species and should at least be separated into four management units corresponding to these four geographic lineages for conservation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Black-and-white snub-nosed monkeys (Rhinopithecus bieti) are endemic to the Trans-Himalayas in Northwest Yunnan and Southeast Tibet between the upper Yangtze and Mekong Rivers. Based on field surveys and previous reports, we identified the dark-coniferous forest, the mixed coniferous and broadleaf forest, and oak patches as suitable habitats (SH) for the monkeys. Summer grazing lands (SGL), which were made by local people cutting and burning the dark-coniferous forest at the high altitude belt, replaced SH. To have a general view of the status of the SH in Yunnan, we estimated the areas of SH and SGL from satellite images in 1997, and compared with areas estimated from aerial photo-based maps (ca. 1958). The work resulted in: 1) the area of SH was 4,169 km(2) in 1997; 2) SGL was 1,923 km(2); 3) during the past 40 years, the area of SH decreased by 31% (1,887 km(2)), and SGL increased by 204% (1,291 km(2)); and 4) the mean size of forest patches decreased from 15.6 to 5.4 km(2). In addition, the area of SGL is positively correlated to local human population (R-2 greater than or equal to0.53), implying that the reduction and fragmentation of habitat for Rhinopithecus bieti is a result of population growth of humans, who mostly employ traditional modes of production. Only 11 monkey groups remained in the changing habitat. Considering that forests at lower elevation were also encroached upon by farmlands in a similar way, the forest ecosystem is highly threatened. The destruction will continue unless there is a change in the mode of production in the region.
Resumo:
Background: Habitat fragmentation may result in the reduction of diversity of parasite communities by affecting population size and dispersal pattern of species. In the flood plain of the Yangtze River in China, many lakes, which were once connected with the river, have become isolated since the 1950s from the river by the construction of dams and sluices, with many larger lakes subdivided into smaller ones by road embankments. These artificial barriers have inevitably obstructed the migration of fish between the river and lakes and also among lakes. In this study, the gastrointestinal helminth communities were investigated in a carnivorous fish, the yellowhead catfish Pelteobagrus fulvidraco, from two connected and five isolated lakes in the flood plain in order to detect the effect of lake fragmentation on the parasite communities. Results: A total of 11 species of helminths were recorded in the stomach and intestine of P. fulvidraco from seven lakes, including two lakes connected with the Yangtze River, i.e. Poyang and Dongting lakes, and five isolated lakes, i.e. Honghu, Liangzi, Tangxun, Niushan and Baoan lakes. Mean helminth individuals and diversity of helminth communities in Honghu and Dongting lakes was lower than in the other five lakes. The nematode Procamallanus fulvidraconis was the dominant species of communities in all the seven lakes. No significant difference in the Shannon-Wiener index was detected between connected lakes (0.48) and isolated lakes (0.50). The similarity of helminth communities between Niushan and Baoan lakes was the highest (0.6708), and the lowest was between Tangxun and Dongting lakes (0.1807). The similarity was low between Dongting and the other lakes, and the similarity decreased with the geographic distance among these lakes. The helminth community in one connected lake, Poyang Lake was clustered with isolated lakes, but the community in Dongting Lake was separated in the tree. Conclusion: The similarity in the helminth communities of this fish in the flood-plain lakes may be attributed to the historical connection of these habitats and to the completion of the life-cycles of this fish as well as the helminth species within the investigated habitats. The diversity and the digenean majority in the helminth communities can be related to the diet of this fish, and to the lacustrine and macrophytic characters of the habitats. The lake isolation from the river had little detectable effect on the helminth communities of the catfish in flood-plain lakes of the Yangtze River. The low similarities in helminth communities between the Dongting Lake and others may just be a reflection of its unique water environment and anthropogenic alterations or fragmentation in this lake.
Resumo:
Based on a long-term ecological monitoring, the present study chose the most dominant benthic macroinvertebrate (Baetis spp.) as target organisms in Xiangxi River, built the habitat suitability models (HSMs) for water depth, current velocity and substrate, respectively, which is the first aquatic organisms model for habitat suitability in the Chinese Mainland with a long-term consecutive in situ measurement. In order to protect the biointegrity and function of the river ecosystem, the theory system of instream environmental flow should be categorized into three hierarchies, namely minimum required instream flow (hydrological level), minimum instream environmental flow (biospecies level), and optimum instream environmental flow (ecosystem level). These three hierarchies of instream environmental flow models were then constructed with the hydrological and weighted usable area (WUA) method. The results show that the minimum required instream flow of Xiangxi River calculated by the Tennant method (10% of the mean annual flow) was 0.615 m(3) s(-1); the minimum instream environmental flow accounted for 19.22% of the mean annual flow (namely 1.182 m(3) s(-1)), which was the damaged river channel. ow in the dry season; and 42.91% of the mean annual flow (namely 2.639 m(3) s(-1)) should be viewed as the optimum instream environmental flow in order to protect the health of the river ecosystem, maintain the instream biodiversity, and reduce the impact of small hydropower stations nearby the Xiangxi River. We recommend that the hydrological and biological methods can help establish better instream environmental. ow models and design best management practices for use in the small hydropower station project. (C) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
Habitat fragmentation may have some significant effects on population genetic structure because geographic distance and physical barriers may impede gene flow between populations. In this study, we investigated whether recent habitat fragmentation affected genetic structure and diversity of populations of the nematode Procamallanus fulvidraconis in the yellowhead catfish, Pelteobagrus fin't4draco. The nematode was collected from 12 localities in 7 floodplain lakes of the Yangtze River. Using I I intersirnple sequence repeat markers, analysis of molecular variance showed that genetic diversity occurred mainly within populations (70.26%). Expected heterozygosity (He) of P. fulvidraconis was barely different between connected (0.2105) and unconnected lakes (0.2083). Population subdivision (Fst) between connected lakes (0.2177) was higher than in unconnected lakes (0. 1676). However, the connected and unconnected lakes did not Cluster into 2 clades. A Mantel test revealed significant positive correlation between genetic and geographic distances (R = 0.5335, P < 0.01). These results suggest that habitat fragmentation did not cause genetic differentiation among populations or a reduction of diversity in isolated populations of P. fulvidraconis. At least 2 factors may increase the dispersal range of the nematode, i.e., flash flooding in summer and other species of fish that may serve as the definitive hosts. Moreover, lake fragmentation is probably a recent process; population size of the nematode in these lakes is large enough to maintain Population structure.