5 resultados para HABITAT-USE
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Habitat use by wintering Ruddy Shelduck (Tadorna ferruginea) in Lijiang Lashihai Lake of southwest China was studied from 1 November 1999 to 29 April 2000. We divided habitats into five types-deep water, shallow water, mudflat, grassland and farmland. Shallow water and grassland, with rich food and easily accessible water, were preferred by wintering Ruddy Shelducks, Farmland was preferred in mid-winter but avoided in early winter and late winter. Even in mid-winter, the feeding Ruddy Shelduck on farmland were not equally distributed in fields and preferred wet fields (just irrigated) and avoided dry fields. In dry fields, the distances to water sources had great impact on the feeding distribution. Mudflats were only selected in later winter, coinciding with the growth of water-weeds. Deep-water areas were always avoided. Prohibition of human disturbance and retaining shallow water areas and grassland are important measures to mitigate conflict between Ruddy Sheldruck and local people.
Resumo:
从 2003 年12 月至2005 年1 月,我在黑白仰鼻猴(Rhinopithecus bieti)分 布区的南端(26.23o N, 99.25o E,海拔2700-3600 m)运用直接观察法与食物遗迹 法收集了龙马山群(大约80 只)的生境利用和食性数据。通过种内及种间比较, 评估该种的食性与栖息地特化程度。 龙马山群春季偏好落叶阔叶树的嫩芽与花;春末夏初偏好竹笋;秋季偏好果 实;冬季偏好壳斗科的种子。全年的食用植物共计27 科52 属97 种,多于中部 和北部猴群利用的种数。与疣猴亚科其他成员的食谱相比,这个数目仍然偏大。 龙马山群的生境利用方式可归纳如下:(1)家域被山脊分割为5 个相对独立 的斑块,斑块之间走廊状况差;(2)进入地图方格(250 m x 250 m)数与观察天 数的关联曲线呈台阶状上升,在120 个观察日前后达到渐近线;(3)年家域面积 约为9.56 km2,个体密度约8.5 只 / km2;(4)冬季与春季生境利用模式相似;(5) 夏季仅充分利用1 个斑块;(6)平均利用海拔高度为3023.75m。 考虑到(1)北端(西藏小昌都)猴群的食用植物种数为20,而中部(云南 维西塔城)是59 种;(2)地衣类的取食时间(树冠或以树冠为主的扫描观察) 在北端是82.1%,而中部是60%;(3)龙马山群具高度生境选择性,全部家域 在针阔混交林范围内。由此可以得出结论,黑白仰鼻猴的食性,以及相应的生境 需求并没有特化。北方猴群当前的食物与生境的‘不寻常’状态,或多或少是无 可奈何的生态适应。 与位于西藏芒康县的米拉卡群比较,龙马山群所受到的人类干扰主要是生境 的破坏与丧失,而米拉卡群面临的主要为偷猎。尽快建立保护区,禁止烧山毁林, 实施巡护制度,杜绝偷猎是龙马山群避免灭绝的唯一出路。
Resumo:
Based on a long-term ecological monitoring, the present study chose the most dominant benthic macroinvertebrate (Baetis spp.) as target organisms in Xiangxi River, built the habitat suitability models (HSMs) for water depth, current velocity and substrate, respectively, which is the first aquatic organisms model for habitat suitability in the Chinese Mainland with a long-term consecutive in situ measurement. In order to protect the biointegrity and function of the river ecosystem, the theory system of instream environmental flow should be categorized into three hierarchies, namely minimum required instream flow (hydrological level), minimum instream environmental flow (biospecies level), and optimum instream environmental flow (ecosystem level). These three hierarchies of instream environmental flow models were then constructed with the hydrological and weighted usable area (WUA) method. The results show that the minimum required instream flow of Xiangxi River calculated by the Tennant method (10% of the mean annual flow) was 0.615 m(3) s(-1); the minimum instream environmental flow accounted for 19.22% of the mean annual flow (namely 1.182 m(3) s(-1)), which was the damaged river channel. ow in the dry season; and 42.91% of the mean annual flow (namely 2.639 m(3) s(-1)) should be viewed as the optimum instream environmental flow in order to protect the health of the river ecosystem, maintain the instream biodiversity, and reduce the impact of small hydropower stations nearby the Xiangxi River. We recommend that the hydrological and biological methods can help establish better instream environmental. ow models and design best management practices for use in the small hydropower station project. (C) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.