35 resultados para Gram-Positive Bacterial Infections

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peptidoglycan recognition protein (PGRP) is an essential molecule in innate immunity for both invertebrates and vertebrates, owing to its prominent ability in detecting and eliminating the invading bacteria. Several PGRPs have been identified from mollusk, but their functions and the underlined mechanism are still unclear. In the present study, the mRNA expression profiles, location, and possible functions of PGRP-S1 from Zhikong scallop Chlamys farreri (CfPG RP-St) were analyzed. The CfPGRP-S1 protein located in the mantle, gill, kidney and gonad of the scallops. Its mRNA expression in hemocytes was up-regulated extremely after PGN stimulation (P < 0.01), while moderately after the stimulations of LPS (P < 0.01) and beta-glucan (P < 0.05). The recombinant protein of CfPGRP-S1 (designated as rCfPGRP-S1) exhibited high affinity to PGN and moderate affinity to LPS, but it did not bind beta-glucan. Meanwhile, rCfPGRP-S1 also exhibited strong agglutination activity to Gram-positive bacteria Micrococcus luteus and Bacillus subtilis and weak activity to Gram-negative bacteria Escherichia coli. More importantly, rCfPGRP-S1 functioned as a bactericidal amidase to degrade PGN and strongly inhibit the growth of E. coli and Staphyloccocus aureus in the presence of Zn2+. These results indicated that CfPGRP-S1 could not only serve as a pattern recognition receptor recognizing bacterial PGN and LPS, but also function as a scavenger involved in eliminating response against the invaders. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human neutrophils are a type of white blood cell, which forms an early line of defense against bacterial infections. Neutrophils are highly responsive to the chemokine, interleukin-8 (IL-8) due to the abundant distribution of CXCR1, one of the IL-8 receptors on the neutrophil cell surface. As a member of the GPCR family, CXCR1 plays a crucial role in the IL-8 signal transduction pathway in neutrophils. We sequenced the complete coding region of the CXCR1 gene in worldwide human populations and five representative nonhuman primate species. Our results indicate accelerated protein evolution in the human lineage, which was likely caused by Darwinian positive selection. The sliding window analysis and the codon-based neutrality test identified signatures of positive selection at the N-terminal ligand/receptor recognition domain of human CXCR1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, EA-CATH1 and EA-CATH2 were identified from a constructed lung cDNA library of donkey (Equus asinus) as members of cathelicidin-derived antimicrobial peptides, using a nested PCR-based cloning strategy. Composed of 25 and 26 residues, respectively, EA-CATH1 and EA-CATH2 are smaller than most other cathelicidins and have no sequence homology to other cathelicidins identified to date. Chemically synthesized EA-CATH1 exerted potent antimicrobial activity against most of the 32 strains of bacteria and fungi tested, especially the clinically isolated drug-resistant strains, and minimal inhibitory concentration values against Gram-positive bacteria were mostly in the range of 0.3-2.4 mu g center dot mL-1. EA-CATH1 showed an extraordinary serum stability and no haemolytic activity against human erythrocytes in a dose up to 20 mu g center dot mL-1. CD spectra showed that EA-CATH1 mainly adopts an alpha-helical conformation in a 50% trifluoroethanol/water solution, but a random coil in aqueous solution. Scanning electron microscope observations of Staphylococcus aureus (ATCC2592) treated with EA-CATH1 demonstrated that EA-CATH could cause rapid disruption of the bacterial membrane, and in turn lead to cell lysis. This might explain the much faster killing kinetics of EA-CATH1 than conventional antibiotics revealed by killing kinetics data. In the presence of CaCl2, EA-CATH1 exerted haemagglutination activity, which might potentiate an inhibition against the bacterial polyprotein interaction with the host erythrocyte surface, thereby possibly restricting bacterial colonization and spread.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The family of fibrinogen-related proteins (FREPs) is a group of proteins with fibrinogen-like domains. Many members of this family play important roles as pattern recognition receptors in innate immune responses. The cDNA of bay scallop Argopecten irradians FREP (designated as AiFREP) was cloned by rapid amplification of cDNA ends (RACE) method based on the expressed sequence tag (EST). The full-length cDNA of AiFREP was of 990 bp. The open reading frame encoded a polypeptide of 251 amino acids, including a signal sequence and a 213 amino acids fibrinogen-like domain. The fibrinogen-like domain of AiFREP was highly similar to those of mammalian ficolins and other FREPs. The temporal expression of AiFREP mRNA in hemolymph was examined by fluorescent quantitative real-time PCR. The mRNA level of scallops challenged by Listonella anguillarum was significantly up-regulated, peaked to 9.39-fold at 9 h after stimulation, then dropped back to 4.37-fold at 12 h, while there was no significant change in the Micrococcus luteus challenged group in all periods of treatment. The function of AiFREP was investigated by recombination and expression of the cDNA fragment encoding its mature peptide in Escherichia coli Rosetta gami (DE3). The recombinant AiFREP (rAiFREP) agglutinated chicken erythrocytes and human A, B, O-type erythrocytes. The agglutinating activities were calcium-dependent and could be inhibited by acetyl group-containing carbohydrates. rAiFREP also agglutinated Gram-negative bacteria E. coli JM109, L anguillarum and Gram-positive bacteria M. luteus in the presence of calcium ions. These results collectively suggested that AiFREP functions as a pattern recognition receptor in the immune response of bay scallop and contributed to nonself recognition in invertebrates, which would also provide clues for elucidating the evolution of the lectin pathway of the complement system. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone that plays key roles in the folding, maintenance of structural integrity and regulation of a subset of cytosolic proteins. In the present study, the cDNA of Argopecten irradians HSP90 (designated AiHSP90) was cloned by the combination of homology cloning and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of AiHSP90 was of 2669 bp, including an open reading frame (ORF) of 2175 bp encoding a polypeptide of 724 amino acids with predicted molecular weight of 83.08 kDa and theoretical isoelectric point of 4.81. BLAST analysis revealed that AiHSP90 shared high similarity with other known HSP90s, and the five conserved amino acid blocks defined as HSP90 protein family signatures were also identified in AiHSP90, which indicated that AiHSP90 should be a cytosolic member of the HSP90 family. Fluorescent real-time quantitative PCR was employed to examine the expression pattern of AiHSP90 mRNA in haemocytes of scallops challenged by Gram-negative bacteria Vibrio anguillarum and Gram-positive bacteria Micrococcus luteus. In both bacterial challenged groups, the relative expression level of AiHSP90 transcript was up-regulated and reached maximal. level at 9 h after injection, and then dropped progressively to the original level at about 48 h post challenge. The results indicated that AiHSP90 was potentially involved in the immune responses against bacteria challenge in scallop A. irradian. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The C1q-domain-containing (C1qDC) proteins are a family of proteins characterized by a globular C1q (gC1q) domain in their C-terminus. They are involved in various processes of vertebrates and supposed to be an important pattern recognition receptor in innate immunity of invertebrates. In this study, a novel member of C1q-domain-containing protein family was identified from Zhikong scallop Chlamys farreri (designated as CfC1qDC) by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of CfC1qDC was of 777 bp, consisting of a T-terminal untranslated region (UTR) of 62 bp and a 3' UTR of 178 bp with a polyadenylation signal sequence AATAAA and a poly (A) tail. The CfC1qDC cDNA encoded a polypeptide of 178 amino acids, including a signal peptide and a C1q-domain of 158 amino acids with the theoretical isoelectric point of 5.19 and the predicted molecular weight of 17.2 kDa. The C1q-domain in CfC1qDC exhibited homology with those in sialic acid binding lectin from mollusks and C1qDC proteins from higher vertebrates. The typical 10 beta-strand jelly-roll folding topology structure of C1q-domain and the residues essential for effective packing of the hydrophobic core were well conserved in CfC1qDC. By fluorescent quantitative real-time PCR, mRNA transcripts of CfC1qDC were mainly detected in kidney, mantle, adductor muscle and gill, and also marginally detectable in hemocytes. In the bacterial challenge experiment, after the scallops were challenged by Listonella anguillarum, there was a significant up-regulation in the relative expression level of CfC1qDC and at 6 h post-injection, the mRNA expression reached the maximum level and was 4.55-fold higher than that of control scallops. Similarly, the expression of CfC1qDC mRNA in mixed primary cultures of hemocytes stimulated by lipopolysaccharides (LPS) was up-regulated and reached the maximum level at 6 h post-stimulation, and then dropped back to the original level gradually. In order to investigate its function, the cDNA fragment encoding the mature peptide of CfC1qDC was recombined and expressed in Escherichia coli BL21 (DE3). The recombinant CfC1qDC protein displayed a significantly strong activity to bind LIDS from E. coli, although no obvious antibacterial or agglutinating activity toward Gram-negative bacteria E. coli JM109, L. anguillarum and Gram-positive bacteria Micrococcus luteus was observed. These results suggested that CfC1qDC was absolutely a novel member of the C1qDC protein family and was involved in the recognition of invading microorganisms probably as a pattern recognition molecule in mollusk. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lysozyme is a widely distributed hydrolase possessing lytic activity against bacterial peptidoglycan, which enables it to protect the host against pathogenic infection. In the present study, the cDNA of an invertebrate goose-type lysozyme (designated CFLysG) was cloned from Zhikong scallop Chlamys farreri by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) techniques. The full-length cDNA of CFLysG consisted of 829 nucleotides with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, and an open reading frame (ORF) of 603 bp encoding a polypeptide of 200 amino acid residues with a predicted molecular weight of 21.92 kDa and theoretical isoelectric point of 7.76. The high similarity of CFLysG with goose-type (g-type) lysozymes in vertebrate indicated that CFLysG should be an invertebrate counterpart of g-type lysozyme family, which suggested that the origin of g-type lysozyme preceded the emergence of urochordates and even preceded the emergence of deuterostomes. Similar to most g-type lysozymes, CFLysG possessed all conserved features critical for the fundamental structure and function of g-type lysozymes, such as three catalytic residues (Glu 82, Asp 97, Asp 108). By Northern blot analysis, mRNA transcript of CFLysG was found to be most abundantly expressed in the tissues of gills, hepatopancreas and gonad, weakly expressed in the tissues of haemocytes and mantle, while undetectable in the adductor muscle. These results suggested that CFLysG could possess combined features of both the immune and digestive adaptive lysozymes. To gain insight into the in vitro lytic activities of CFLysG, the mature peptide coding region was cloned into Pichia pastoris for heterogeneous expression. Recombinant CFLysG showed inhibitive effect on the growth of both Gram-positive and Gram-negative bacteria with more potent activities against Gram-positive bacteria, which indicated the involvement of CFLysG in the innate immunity of C. farreri. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antimicrobial peptides are important components of the host innate immune responses by exerting broad-spectrum microbicidal activity against pathogenic microbes. The first mollusk big defensin (designated AiBD) cDNA was cloned from bay scallop Argopecten irradians by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) techniques. The scallop AiBD consisted of 531 nucleotides with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, encoding a polypeptide of 122 amino acids. The high similarity of AiBD deduced amino acid sequence with big defensin from Tachypleus tridentatus and Branchiostoma belcheri tsingtaunese indicated that AiBD should be a member of big defensin family. The expression of AiBD in various tissues was measured by using Northern blotting analysis. mRNA transcripts of AiBD could be detected in haemocytes of unchallenged scallops. The temporal expression of AiBD in haemolymph after Vibrio anguilarum challenge was recorded by quantitative real time PCR. The relative expression level of AiBD in haemolymph was up-regulated evenly in the first 8 h, followed by a drastic increase, and increased 131.1-fold at 32 h post-injection. These results indicated that AiBD could be induced by bacterial challenge, and it should participate in the immune responses of A. irradians. Biological activity assay revealed that recombinant AiBD could inhibit the growth of both Gram-positive and Gram-negative bacteria, and also showed strong fungicidal activity towards the expression host. Recombinant expression of AiBD made it possible to further characterize its functions involved in immune responses, and also provided a potential therapeutic agent for disease control in aquaculture. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CpG-containing oligodeoxynucleotides (ODNs) are known to be immunostimulatory in vertebrate systems and can activate both innate and adaptive immune responses. In this report, we described the selection, identification, and analysis of CpG motifs with immunoprotective effects in Japanese flounder. Sixteen CpG ODNs were synthesized and examined for the ability to inhibit bacterial dissemination in Japanese flounder blood. Four ODNs with the strongest inhibitory effects were selected and mixed to form ODNs 4M. In addition, a plasmid, pCN6, was constructed that contains the sequences of the four selected ODNs. When administered into Japanese flounder via intraperitoneal injection, both ODNs 4M and pCN6 could, in dose and time dependent manners, afford short-term protection against the infections of two different bacterial pathogens. Immunological analyses showed that ODNs 4M and, especially, pCN6 activated head kidney macrophages and enhanced serum bactericidal activity via probably the alternative pathway of complement activation. When used as a DNA vaccine to immunize Japanese flounder, pCN6 conferred apparent protections (42.9% and 52.6%, respectively, in terms of relative percent survival) against the challenges of two different fish pathogens at 4-week post-vaccination. Transcriptional analysis showed that vaccination with pCN6 upregulated the expression of the genes encoding NKEF, MHC II alpha, IL-1 beta, Mx, and MHC I alpha. These results demonstrate that ODNs 4M and pCN6 are immunostimulatory in Japanese flounder and can induce short- and long-term nonspecific protections against bacterial infections. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hsp70 proteins are a family of molecular chaperones that are involved in many aspects of protein homeostasis. In this study, an Hsp70 homologue (SoHsp70) was identified from red drum Sciaenops ocellatus and analyzed at molecular level. The open reading frame of SoHsp70 is 1920 bp and intronless, with a 5'-untranslated region (UTR) of 399 bp and a 3'-UTR of 241 bp. The deduced amino acid sequence of SoHsp70 shares 84-92% overall identities with the Hsp70s of a number of fish species. In silico analysis identified in SoHsp70 three conserved Hsp70 domains involved in nucleotide and substrate binding. The coding sequence of SoHsp70 was subcloned into Escherichia coli, from which recombinant SoHsp70 was purified and, upon ATPase assay, found to exhibit apparent ATPase activity. Expressional analysis showed that constitutive expression of SoHsp70 was detectable in heart, liver, spleen, kidney, brain, blood, and gill. Experimental challenges with poly(I:C) and bacterial pathogens of Gram-positive and Gram-negative nature induced SoHsp70 expression in kidney to different levels. Stress-responsive analysis of SoHsp70 expression in primary cultures of red drum hepatocytes showed that acute heat shock treatment elicited a rapid induction of SoHsp70 expression which appeared after 10 min and 30 min of treatment. Exposure of hepatocytes separately to iron, copper, mercury, and hydrogen peroxide significantly unregulated SoHsp70 expression in time-dependent manners. Vaccination of red drum with a Streptococcus iniae bacterin was also found to induce SoHsp70 expression. Furthermore, recombinant SoHsp70 enhanced the immunoprotective effect of a subunit vaccine. Taken together, these results suggest that SoHsp70 is a stress-inducible protein that is likely to play a role in immunity and in coping with environmental and biological stresses. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C-type lectins are calcium-dependent carbohydrate-binding proteins that play Important roles in innate immunity In this study, a C-type lectin homologue (SmLec1) was identified from turbot (Scophthalmus maximus) and analyzed at expression and functional levels. The open reading frame of SmLec1 is 504 bp, with a 5'-untranslated region (UTR) of 101 bp and a 3'-UTR of 164 bp The deduced amino acid sequence of SmLec1 shares 34%-38% overall identities with the C-type lectins of several fish species In silico analysis identified in SmLec1 conserved C-type lectin features, including a carbohydrate-recognition domain, four disulfide bond-forming cysteine residues, and the mannose-type carbohydrate-binding motif In addition, SmLec1 possesses a putative signal peptide sequence and is predicted to be localized in the extracellular. Expression of SmLec1 was highest in liver and responded positively to experimental challenges with fish pathogens Recombinant SmLec1 (rSmLec1) purified from yeast was able to agglutinate the Gram-negative fish pathogen Listonella anguillarum but not the Gram-positive pathogen Streptococcus uncle The agglutinating ability of rSmLec1 was abolished in the presence of mannose and ethylenediaminetetraacetic acid and by elevated temperature (65 degrees C) Further analysis showed that rSmLec1 could stimulate kidney lymphocyte proliferation and enhance the killing of bacterial pathogen by macrophages Taken together, these results suggest that SmLec1 is a unique mannose-binding C-type lectin that possesses apparent immunomodulating property and is likely to be involved in host defense against bacterial infection (C) 2010 Elsevier Ltd. All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A natural lectin from the serum of the shrimp Litopenaeus vannamei was purified to homogeneity by a single-step affinity chromatography using fetuin-coupled agarose. The purified serum lectin (named LVL) showed a strong affinity for human A/B/O erythrocytes (RBC), mouse RBC, chicken RBC and its haemagglutinating (HA) activity was specifically dependent on Ca2+ and reversibly sensitive to EDTA. LVL inactive form had a molecular mass estimate of 172 kDa and was composed of two non-identical subunits (32 and 38 kDa) cross-linked by interchain disulphide bonds. Significant LVL activity was observed between pH 7 and 11. In HA-inhibition assays performed with several carbohydrates and glycoproteins, LVL showed a distinct and unique specificity for GalNAc/GluNAc/NeuAc which had an acetyl group, while glycoproteins fetuin and bovine submaxillary mucin (BSM) had sialic acid. Moreover, this agglutinin appeared to recognise the terminal N- and O-acetyl groups in the oligosaccharide chain of glycoconjugates. The HA activity of L. vannamei lectin was also susceptible to inhibition by lipopolysaccharides from diverse Gram-negative bacteria, which might indicate a significant in vivo role of this humoral agglutinin in the host immune response against bacterial infections. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amphibian skin is a rich resource of antimicrobial peptides like maximins and maximins H from toad Bombina maxima. A novel cDNA clone encoding a precursor protein that comprises maximin 3 and a novel peptide. named maximin H5. was isolated from a skin cDNA library of B. maxima. The predicted primary structure of maximin H5 is ILGPVLGLVSDTLDDVLGIL-NH2,. Containing three aspartate residues and no basic amino acid residues. maximin H5 is characterized by an anionic property. Different from cationic maximin H peptides. only Gram-positive strain Staphylococcus aureus was sensitive to maximin H5. while the other bacteria] and fungal strains tested ere resistant to it. The presence of metal ions. like Zn2+ and Mg2+, did not increase its antimicrobial potency. Maximin H5 represents the first example of potential anionic antimicrobial peptides from amphibians, The results provide the first evidence that. together kith cationic antimicrobial peptides. anionic antimicrobial peptides may also exist naturally as part of the innate defense system. (C), 2002 Elsevier Science (USA). All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Gram-positive bacterium, designated strain CW 7(T), was isolated from forest soil in Anhui Province, south-east China. Cells were strictly aerobic, motile with peritrichous flagella and rod-shaped. The strain grew optimally at 30-37 degrees C and pH 7.0-8.0. The major fatty acids of strain CW 7(T) were anteiso-C-15:0, iso-C-15:0 and anteiso-C-17:0. The predominant menaquinone was MK-7. The cell-wall peptidoglycan contained meso-diaminopimelic acid. The G + C content of the genomic DNA was 42.3 mol%. Phylogenetic analysis indicated that strain CW 7(T) belonged to a monophyletic cluster within the genus Bacillus and showed 16S rRNA gene sequence similarities of less than 96.5% to recognized species of the genus Bacillus. The results of the polyphasic taxonomic study, including phenotypic, chemotaxonomic and phylogenetic analyses, showed that strain CW 7(T) represents a novel species of the genus Bacillus, for which the name Bacillus pallidus sp. nov. is proposed. The type strain is CW 7(T) (=KCTC 13200(T)=CCTCC AB 207188(T)=LMG 24451(T)).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By Sephadex G-50 gel filtration, Resource Q anionic exchange and C4 reversed phase liquid high performance liquid chromatography, a proteinase inhibitor protein (Ranaserpin) was identified and purified from the eggs of the odour frog, Rana grahami. The protein displayed a single band adjacent to the molecular weight marker of 14.4 kDa analyzed by SDS-PAGE. The inhibitor protein homogeneity and its molecular weight were confirmed again by MALDI-TOF mass spectrometry analysis. The MALDI-TOF mass spectrum analysis gave this inhibitor protein an m/z of 14422.26 that was matched well with the result from SDS-PAGE. This protein is a serine proteinase inhibitor targeting multiple proteinases including trypsin, elastase, and subtilisin. Ranaserpin inhibited the proteolytic activities of trypsin, elastase, and subtilisin. It has an inhibitory constant (K-i) of 6.2 x 10(-8) M, 2.7 x 10(-7) M and 2.2 x 10(-8) M for trypsin, elastase, and subtilisin, respectively. This serine proteinase inhibitor exhibited bacteriostatic effect on Gram-positive bacteria Bacillus subtilis (ATCC 6633). It was suggested that ranaserpin might act as a defensive role in resistance to invasion of pests or pathogens. This is the first report of serine proteinase inhibitor and its direct defensive role from amphibian eggs. (C) 2007 Elsevier Inc. All rights reserved.