119 resultados para Glycerol electrolyte
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In order to raise the room temperature ionic conductivity and improve the mechanical strength of a PEO-based polymer electrolyte, a non-crystalline two-component epoxy network was synthesized by curing diglycidyl ether of polyethylene glycol (DGEPEG) with triglycidyl ether of glycerol (TGEG) in the presence of LiClO4 salt, which acts in this system as both a ring opening catalyst and a source of ionic carrier. The structure of the precursors, the curing process and the cured films have been characterized by C-13 NMR, IR, DSC and ionic conductivity measurement techniques. The electrolyte system exhibits an ionic conductivity as high as similar to 10(-5) S/cm at 25 degrees C and is mechanically self-supportable. The dependence of ionic conductivity was investigated as a function of temperature, salt content, MW of PEG segment in DGEPEG and the proportion of DGEPEG in DGEPEG/TGEG ratio.
Resumo:
The correlation between mechanical relaxation and ionic conductivity was investigated in a two-component epoxy network-LiClO4 electrolyte system. The network was composed of diglycidyl ether of polyethylene glycol (DGEPEG) and triglycidyl ether of glycerol (TGEG). The effects of salt concentration, molecular weight of PEG in DGEPEG and the proportion of DGEPEG (1000) in DGEPEG/TGEG ratio on the ionic conductivity and the mechanical relaxation of the system were studied. It was found that, among the three influential factors, the former reinforces the network chains, reduces the free volume fraction and thus increases the relaxation time of the segmental motion, which in turn lowers the ionic conductivity of the specimen. Conversely, the latter two increase the free volume and thus the chain flexibility, showing an opposite effect. From the iso-free-volume plot of the shift factor log at and reduced ionic conductivity, it is noted that the plot can be used to examine the temperature dependence of segmental mobility and seems to be useful to judge whether the incorporated salt has been dissociated completely. Besides, the ionic conductivity and relaxation time at constant reference temperature are linearly correlated with each other in all the three cases. This result gives an additional experimental confirmation of the coordinated motion model of the ionic hopping with the moving polymer chain segment, which is generally used to explain the ionic conduction in non-glassy amorphous polymer electrolytes.
Resumo:
An epoxy network-LiClO4 electrolyte system was prepared from diglycidyl ether of polyethylene glycol and triglycidyl ether of glycerol, cured in the presence of LiClO4 only. Various techniques were used to characterize the chemical structure of the precursors and the correlation between the viscoelasticity and conductivity of the cured films was examined.
Resumo:
Glycerol and dimethyl sulfoxide (DMSO) are widely used as penetrating cryoprotectants in the freezing of sperm, and various concentrations are applied in different species and laboratories. The present study aimed to examine the effect of these two cryoprotectants at different concentrations (2%, 5%, 10%, and 15% glycerol or DMSO) on rhesus monkey sperm cryopreservation. The results showed that the highest recovery of post-thaw sperm motility, and plasma membrane and acrosome integrity was achieved when the sperm was frozen with 5% glycerol. Spermatozoa cryopreserved with 15% DMSO showed the lowest post-thaw sperm motility, and spermatozoa cryopreserved with 15% glycerol and 15% DMSO showed the lowest plasma membrane integrity among the eight groups. The results achieved with 5% glycerol were significantly better for all parameters than those obtained with 5% DMSO. The functional cryosurvival of sperm frozen with 5% glycerol was further assessed by in vitro fertilization (IVF). Overall, 85.7% of the oocytes were successfully fertilized, and 51.4% and 5.7% of the resulting zygotes developed into morulae and blastocysts, respectively. The results indicate that the type and concentration of the penetrating cryoprotectant used can greatly affect the survival of rhesus monkey sperm after it is frozen and thawed. The suitable glycerol level for rhesus monkey sperm freezing is 5%, and DMSO is not suitable for rhesus monkey sperm cryopreservation. (C) 2004 Wiley-Liss, Inc.
Resumo:
Proton-conducting membranes were prepared by polymerization of microemulsions consisting of surfactant-stabilized protic ionic liquid (PIL) nanodomains dispersed in a polymerizable oil, a mixture of styrene and acrylonitrile. The obtained PIL-based polymer composite membranes are transparent and flexible even though the resulting vinyl polymers are immiscible with PIL cores. This type of composite membranes have quite a good thermal stability, chemical stability, tunability, and good mechanical properties. Under nonhumidifying conditions, PIL-based membranes show a conductivity up to the order of 1 x 10(-1) S/cm at 160 degrees C, due to the well-connected PIL nanochannels preserved in the membrane. This type of polymer conducting membranes have potential application in high-temperature polymer electrolyte membrane fuel cells.
Resumo:
Electrolyte electroreflectance spectra of the near-surface strained-layer In0.15Ga0.85As/GaAs double single-quantum-well electrode have been studied at different biases in non-aqueous solutions of ferrocene and acetylferrocene. The optical transitions, the Franz-Keldysh oscillations (FKOs) and the quantum confined Stark effects (QCSE) of In0.15Ga0.85As/GaAs quantum well electrodes are analyzed. Electric field strengths at the In0.15Ga0.85As/GaAs interface are calculated in both solutions by a fast Fourier transform analysis of FKOs. A dip is exhibited in the electric field strength versus bias (from 0 to 1.2 V) curve in ferrocene solution. A model concerning the interfacial tunneling transfer of electrons is used to explain the behavior of the electric field. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The quantum-confined Stark effect and the Franz-Keldysh oscillation of a single quantum well (SQW) GaAs/AlxGa1-xAs electrode were studied in non-aqueous hydroquinone + benzoquinone solution with electrolyte electroreflectance spectroscopy. By investigation of the relation of the quantum-confined Stark effect and the Franz-Keldysh oscillation with applied external bias, the interfacial behaviour of an SQW electrode was analysed. (C) 1997 Elsevier Science S.A.
Resumo:
Single and multiple quantum wells of lattice-matched superlattices material GaAs/AlxGa1-xAs have been studied as photoelectrodes in photoelectrochemical cells containing nonaqueous electrolyte. Structural photocurrent spectra in the potential range of -1.8 to 1.0 V (vs standard calomel electrode) were obtained. The quantum yields for both superlattice electrodes were estimated and compared.
Resumo:
The EER spectra of a single quantum well GaAs\AlxGa1-xAs electrode were studied as a function of applied reverse bias in ferrocene, p-methyl nitrobenzene and hydroquinone+benzoquinone non-aqueous solutions. EER spectra were compared for different redox species and showed that a pronounced quantum-confined Stark effect and a Franz-Keldysh oscillation for a single quantum well electrode were obtained in the p-methyl-nitrobenzene- and hydroquinone+benzoquinone-containing solutions. A surface interaction of the single quantum well electrode with ferrocene led to fewer changes in the electric field of the space charge layer for reverse bias; this was suggested to explain the weak quantum-confined Stark effect and Franz-Keldysh oscillation effect observed for the single quantum well electrode in the ferrocene-containing solution. (C) 1997 Elsevier Science S.A.
Resumo:
Synthesis of segmented all-Pt nanowires is achieved by a template-assisted method. The combination of a suitably chosen electrolyte/template system with pulse-reverse electrodeposition allows the formation of well-defined segments linked to nanowires. Manipulation of the morphology is obtained by controlling the electrokinetie effects on the local electrolyte distribution inside the nanochannels during the nanowire growth process, allowing a deviation from the continuously cylindrical geometry given by the nanoporous template. The length of the segments can be adjusted as a function of the cathodic pulse duration. Applying constant pulses leads to segments with homogeneous shape and dimensions along most of the total wire length. X-ray diffraction demonstrates that the preferred crystallite orientation of the polycrystalline wires varies with the average segment length. The results are explained considering transitions in texture formation with increasing thickness of the electrodeposit. A mechanism of segment formation is proposed based on structural characterizations. Nanowires with controlled segmented morphology are of great technological importance, because of the possibility to precisely control their substructure as a means of tuning their electrical, thermal, and optical properties. The concept we present in this work for electrodeposited platinum and track-etched polycarbonate membranes can be applied to other selected materials as well as templates and constitutes a general method to controlled nanostructuring and synthesis of shape controlled nanostructures.
Resumo:
Various organometallic compounds (diphenylzinc, dibenzylzinc, dicyclohexylzinc, bis( pentafluorophenyl) zinc, diethylzinc, di(n-butyl) zinc, triethylaluminum) were used to form Y(CCl3COO)(3)-organometallic compound-glycerol catalyst for the copolymerization of carbon dioxide and propylene oxide. It was found that Y(CCl3COO)(3)-diphenylzinc-glycerol catalyst showed the highest catalytic activity, at optimum conditions the yield could be as high as 478.8 ( g polymer/mol Zn h).
Resumo:
Vapor-phase dehydration of glycerol to produce acrolein was investigated at 320 A degrees C over rare earth (including La, Ce, Nd, Sm, Eu, Gd, Tb, Ho, Er, Tm, Yb, Lu) pyrophosphates, which were prepared by precipitation method. The most promising catalysts were characterized by means of XRD, FT-IR, TG-DTA, BET and NH3-TPD measurements. The excellent catalytic performance of rare earth pyrophosphate depends on the appropriate surface acidity which can be obtained by the control of pH value in the precipitation and the calcination temperature, e.g. Nd-4(P2O7)(3) precipitated at pH = 6 and calcined at 500 A degrees C in the catalyst preparation.