88 resultados para GRAVITATIONAL COLLAPSE
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The method of density matching between the solid and liquid phases is often adopted to effectively eliminate the effect of sedimentation of suspensions in studies on dynamic behaviour of a colloidal system. However, the associated changes in the solvent composition may bring side effects to the properties investigated and therefore might lead to a faulty conclusion if the relevant correction is not made. To illustrate the importance of this side effect, we present an example of the sedimentation influence on the coagulation rate of suspensions of 2 μm (diameter) polystyrene. The liquid mixtures, in the proper proportions of water (H2O), deuterium oxide (D2O) and methanol (MeOH) as the liquid phase, density-matched and unmatched experiments are performed. Besides the influence of viscosity, the presence of methanol in solvent media, used to enhance the sedimentation effect, causes significant changes (reduction) in rapid coagulation rates compared to that in pure water. Without the relevant corrections for those non-gravitational factors it seems that gravitational sedimentation would retard the coagulation. The magnitude of the contribution from the non-gravitational factor is quantitatively determined, making the relevant correction possible. After necessary corrections for all factors, our experiments show that the influence of the sedimentation on coagulation rates at the initial stage of the coagulation is not observable.
Resumo:
Until quite recently our understanding of the basic mechanical process responsible for earthquakes and faulting was not well known. It can be argued that this was partly a consequence of the complex nature of fracture in crust and in part because evidence of brittle phenomena in the natural laboratory of the earth is often obliterated or obscured by other geological processes. While it is well understood that the spatial and temporal complexity of earthquakes and the fault structures emerge from geometrical and material built-in heterogeneities, one important open question is how the shearing becomes localized into a band of intense fractures. Here the authors address these questions through a numerical approach of a tectonic plate by considering rockmass heterogeneity both in microscopic scale and in mesoscopic scale. Numerical simulations of the progressive failure leading to collapse under long-range slow driving forces in the far-field show earthquake-like rupture behavior. $En Echelon$ crack-arrays are reproduced in the numerical simulation. It is demonstrated that the underlying fracturing induced acoustic emissions (or seismic events) display self-organized criticality------from disorder to order. The seismic cycles and the geometric structures of the fracture faces, which are found greatly depending on the material heterogeneity (especially on the macroscopic scale), agree with that observed experimentally in real brittle materials. It is concluded that in order to predict a main shock, one must have extremely detailed knowledge on very minor features of the earth's crust far from the place where the earthquake originated. If correct, the model proposed here seemingly provides an explanation as to why earthquakes to date are not predicted so successfully. The reason is not that the authors do not understand earthquake mechanisms very well but that they still know little about our earth's crust.
Resumo:
The effect of a small amount of Brownian diffusion on gravitational coagulation is numerically calculated by incorporating gravitational and interparticle forces (both attractive and repulsive), as well as hydrodynamic interactions. It is found that weak Brownian diffusion, the effect of which is nonlinearly coupled with gravity, can act to decrease the coagulation rate.
Resumo:
Papaseit et al. (Proc. Nati. Acad. Sci. U.S.A. 97, 8364, 2000) showed the decisive role of gravity in the formation of patterns by assemblies of microtubules in vitro. By virtue of a functional scaling, the free energy for MT systems in a gravitational field was constructed. The influence of the gravitational field on MT's self-organization process, that can lead to the isotropic to nematic phase transition, is the focus of this paper. A coupling of a concentration gradient with orientational order characteristic of nernatic ordering pattern formation is the new feature emerging in the presence of gravity. The concentration range corresponding to a phase coexistence region increases with increasing g or NIT concentration. Gravity facilitates the isotropic to nernatic phase transition leading to a significantly broader transition region. The phase transition represents the interplay between the growth in the isotropic phase and the precipitation into the nematic phase. We also present and discuss the numerical results obtained for local NIT concentration change with the height of the vessel, order parameter and phase transition properties.
Resumo:
IEECAS SKLLQG
Resumo:
he first order perturbations of the energy levels of a stationary hydrogen atom in a static external gravitational field, with Schwarzschild metric, are investigated. The energy shifts are calculated for the relativistic 1S, 2S, 2P, 3S, 3P, 3D, 4S, 4P, 4D, and 4F levels. The results show that the energy-level shifts of the states with total angular momentum quantum number 1/2 are all zero, and the ratio of absolute energy shifts with total angular momentum quantum number 5/2 is 145. This feature can be used to help us to distinguish the gravitational effect from other effects.
Resumo:
The first-order perturbations of the energy levels of a hydrogen atom in central internal gravitational field are investigated. The internal gravitational field is produced by the mass of the atomic nucleus. The energy shifts are calculated for the relativistic 1S, 2S, 2P, 3S, 3P, 3D, 4S, and 4P levels with Schwarzschild metric. The calculated results show that the gravitational corrections are sensitive to the total angular momentum quantum number.
Resumo:
The collapse process of porphyrin monolayers at the air-water interface was studied by Brewster angle microscopy and by compression-recompression isotherms. It was found that the start of collapse observed by BAM is accordant with that measured by compression-recompression isotherms. The behavior of mixed monolayers was studied also and the results showed that porphyrin islands were excluded from mixed monolayers at 35mN/m.
Resumo:
The collapse behaviour of phthalocyanine monolayers at the air-water interface was studied by means of compression-expansion isotherms. Measurements of two cycles of compression-expansion isotherms of copper tetrakis (4'-benzyloxy-4-phenylsulfonylphenoxy) phthalocyanine showed that the difference in the area per molecule at target pressure between the first cycle and the second cycle was dependent on the target pressure. This difference was used to identify the collapse of monolayers at the air-water interface. The transfer behaviour of monolayers at the air-water interface onto a substrate at different target pressures was also studied.
Resumo:
The "interaction effect" between aluminum foam and metal column that takes place when foam-filled hat sections (top-hats and double-hats) are axially crushed was investigated in this paper. Based on experimental examination, numerical simulation and analytical models, a systemic approach was developed to partition the energy absorption quantitatively into the foam filler component and the hat section component, and the relative contribution of each component to the overall interaction effect was therefore evaluated. Careful observation of the collapse profile found that the crushed foam filler could be further divided into two main energy-dissipation regions: densified region and extremely densified region. The volume reduction and volumetric strain of each region were empirically estimated. An analytical model pertinent to the collapse profile was thereafter proposed to find the more precise relationship between the volume reduction and volumetric strain of the foam filler. Combined the superfolding element model for hat sections with the current model according to the coupled method, each component energy absorption was subsequently derived, and the influence of some controlling factors was discussed. According to the finite element analysis and the theoretical modeling, when filled with foam, energy absorption was found to be increased both in the hat section and the foam filler, whereas the latter contributes predominantly to the interaction effect. The formation of the extremely densified region in the foam filler accounts for this effect.
Sensitivity Analysis of Dimensionless Parameters for Physical Simulation of Water-Flooding Reservoir
Resumo:
A numerical approach to optimize dimensionless parameters of water-flooding porous media flows is proposed based on the analysis of the sensitivity factor defined as the variation ration of a target function with respect to the variation of dimensionless parameters. A complete set of scaling criteria for water-flooding reservoir of five-spot well pattern case is derived from the 3-D governing equations, involving the gravitational force, the capillary force and the compressibility of water, oil and rock. By using this approach, we have estimated the influences of each dimensionless parameter on experimental results and thus sorted out the dominant ones with larger sensitivity factors ranging from10-4to10-0 .
Resumo:
To investigate the low temperature fatigue crack propagation behavior of offshore structural steel A131 under random ice loading, three ice failure modes that are commonly present in the Bohai Gulf are simulated according to the vibration stress responses induced by real ice loading. The test data are processed by a universal software FCPUSL developed on the basis of the theory of fatigue crack propagation and statistics. The fundamental parameter controlling the fatigue crack propagation induced by random ice loading is determined to be the amplitude root mean square stress intensity factor K-arm. The test results are presented on the crack propagation diagram where the crack growth rate da/dN is described as the function of K-arm. It is evident that the ice failure modes have great influence on the fatigue crack propagation behavior of the steel in ice-induced vibration. However, some of the experimental phenomena and test results are hard to be physically explained at present. The work in this paper is an initial attempt to investigate the cause of collapse of offshore structures due to ice loading.
Resumo:
Pulsed fluidization is of considerable interest in process engineering for improving fluidization quality. Quantitative understanding of the pulsed two-phase flow behaviors is very important for proper design and optimum operation of such contactors. The
Resumo:
The pulsed liquid fluidized bed was studied using numerical simulation and experimental methods, The area-averaged two-fluid model (TFM) was used to simulate the pulsed fluidization. The bed expansion and collapse processes were simulated first and the phenomena obtained from the calculation were consistent with our previous experiments and observations. In the pulsed fluidization, the variation of bed height, the variations of particle velocity and concentration distribution were obtained and analyzed. Experiments were carried out to validate the simulation results. The pressure variation with time at different locations was measured using pressure transducers and compared with the simulated results. The variations of bed height and particle concentration distribution were recorded using a digital video camera recorder. The results were consistent with the simulation results as a whole.