128 resultados para GAS PHASE-TRANSITION

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction character of m/z183 and 184 ions generated from ion -molecule reaction of toluene under self-chemical ionization was studied using Collision-Induced Dissociation (CID). The results Show that the m/z183 and 184 ions have several transition state structures; such as diphenyl methane derivative, alpha-bond structure formed between toluene and tropylium, pi-complex formed between toluene radical ion and toluene and pi-complex consisted of benzyl ion and toluene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With Mass Analyzed Ion Kinetic Energy Spectrometry (MIKES), Collisional Induced Dissociation(CID), and Electron Capture Induced Decomposition(ECID) technigues, the doubly charged ions and singly charged ions from o(-), m(-), and p(-) diol benzene in the EI source have been studied. In terms of the values of the kinetic energy releases(T) of the charge separation reactions of the doubly charged ions and the estimated intercharge distances(R) of the exploding doubly charged ions the transition structures were proposed. Some structural information about the transition states was also obtained. It is of interest that the MIKES/CID spectra of singly charged ions [C6H6O2](+) from the three isomers are of significant differences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unimolecular dissociation reactions of doubly charged ions were reported, which resulted from a tandem mass spectrometer and a reversed geometry double focusing mass spectrometer by electron impact, Mass analyzed ion kinetic energy spectrometry (MIKES) was used to obtain the kinetic energy releases in charge separation reactions of doubly charged ions, The intercharge distances between the two charges at transition states can be calculated from the kinetic energy releases, Transition structures of unimolecular dissociation reactions were infered from MIKES and MS/MS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unimolecular charge separation reactions of the doubly charged ions FeC10H102+, FeC10H theta 2+, FeC10H82+ produced in the ion source by electron impact from ferrocene have been studied using Mass analyzed Ion Kinetic Energy Spectrometry (MIKES) technique. From the values of the kinetic energy releases (T), the intercharge distances (R) of the exploding doubly charged ions in their transition structures have been estimated and some structural informations about the transition states can be obtained. The collision induced reactions of the FeC10H102+ ion with Ar have been studied using MIKES, we postulate a new type of continuing reaction which may be "collisional charge separation induced dissociation".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structures of CH5O+ from two different reactions which are protonation of CH3OH from the above two pathways possess the same structures, CH3OH2+. The value of kinetic energy release for the metastable decomposition CH2OH3+-> CH2OH+ + H-2 determined from the experiment is in good agreement with that from theoretical calculations. The transition state of above reaction were disscussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-step phase transition model, displacive to order-disorder, is proposed. The driving forces for these two transitions are fundamentally different. The displacive phase transition is one type of the structural phase transitions. We clearly define the structural phase transition as the symmetry broking of the unit cell and the electric dipole starts to form in the unit cell. Then the dipole-dipole interaction takes place as soon as the dipoles in unit cells are formed. We believe that the dipole-dipole interaction may cause an order-disorder phase transition following the displacive phase transition. Both structural and order-disorder phase transition can be first-order or second-order or in between. We found that the structural transition temperatures can be lower or equal or higher than the order-disorder transition temperature. The para-ferroelectric phase transition is the combination of the displacive and order-disorder phase transitions. It generates a variety of transition configurations along with confusions. In this paper, we discuss all these configurations using our displacive to order-disorder two-step phase transition model and clarified all the confusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spin Hall effect can be induced by both extrinsic impurity scattering and intrinsic spin-orbit coupling in the electronic structure. The HgTe/CdTe quantum well has a quantum phase transition where the electronic structure changes from normal to inverted. We show that the intrinsic spin Hall effect of the conduction band vanishes on the normal side, while it is finite on the inverted side. By tuning the Cd content, the well width, or the bias electric field across the quantum well, the intrinsic spin Hall effect can be switched on or off and tuned into resonance under experimentally accessible conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the disentanglement evolution of two spin qubits which interact with a general XY spin-chain environment. The dynamical process of the disentanglement is numerically and analytically investigated in the vicinity of a quantum phase transition (QPT) of the spin chain in both weak and strong coupling cases. We find that the disentanglement of the two spin qubits may be greatly enhanced by the quantum critical behavior of the environmental spin chain. We give a detailed analysis to facilitate the understanding of the QPT-enhanced decaying behavior of the coherence factor. Furthermore, the scaling behavior in the disentanglement dynamics is also revealed and analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate theoretically that electric field can drive a quantum phase transition between band insulator to topological insulator in CdTe/HgCdTe/CdTe quantum wells. The numerical results suggest that the electric field could be used as a switch to turn on or off the topological insulator phase, and temperature can affect significantly the phase diagram for different gate voltage and compositions. Our theoretical results provide us an efficient way to manipulate the quantum phase of HgTe quantum wells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the Loschmidt echo (LE) of a coupled system consisting of a central spin and its surrounding environment described by a general XY spin-chain model. The quantum dynamics of the LE is shown to be remarkably influenced by the quantum criticality of the spin chain. In particular, the decaying behavior of the LE is found to be controlled by the anisotropy parameter of the spin chain. Furthermore, we show that due to the coupling to the spin chain, the ground-state Berry phase for the central spin becomes nonanalytical and its derivative with respect to the magnetic parameter lambda in spin chain diverges along the critical line lambda=1, which suggests an alternative measurement of the quantum criticality of the spin chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An in situ energy dispersive x-ray diffraction study on nanocrystalline ZnS was carried out under high pressure up to 30.8 GPa by using a diamond anvil cell. The phase transition from the wurtzite to the zinc-blende structure occurred at 11.5 GPa, and another obvious transition to a new phase with rock-salt structure also appeared at 16.0 GPa-which was higher than the value for the bulk material. The bulk modulus and the pressure derivative of nanocrystalline ZnS were derived by fitting the Birch-Murnaghan equation. The resulting modulus was higher than that of the corresponding bulk material, indicating that the nanomaterial has higher hardness than the bulk material.