16 resultados para Fiber-metal laminates
em Chinese Academy of Sciences Institutional Repositories Grid Portal
A NEW THERMOPLASTIC POLYIMIDE COMPOSITE PREPARED BY THE POLYMERIZATION OF MONOMER REACTANTS APPROACH
Resumo:
A novel amorphous thermoplastic polyimide (PTI) is being developed as a potential matrix resin for advanced composites. This paper describes the manufacture of the resin, prepreg, and processing of the composite. The chemical and physical behavior of the resin during the processing was determined by infrared spectroscopy and rheology. The influence of processing conditions on the composite properties was investigated. Mechanical properties of the unidirectional carbon fiber/PTI laminates were also presented.
Resumo:
The material response and failure mechanism of unidirectional metal matrix composite under impulsive shear loading are investigated in this paper. Both experimental and analytical studies were performed. The shear strength of unidirectional C-f/A356.0 composite and A356.0 aluminum alloy at high strain rate were measured with a modified split Hopkinson torsional bar technique. The results indicated that the carbon fibers did not improve the shear strength of aluminum matrix if the fiber orientation aligned with the shear loading axis. The microscopic inspection of the fractured surface showed a multi-scale zigzag feature which implied a complicated shear failure mechanism in the composite. In addition to testing, the micromechanical stress field in the composite was analyzed by the generalized Eshelby equivalent method (GEEM). The influence of cracking in matrix on the micromechanical stress field was investigated as well. The results showed that the stress distribution in the composite is quite nonhomogeneous and very high shear stress concentrations are found in some regions in the matrix. The high shear stress concentration in the matrix induces tensile cracking at 45 degrees to the shear direction. This in turn aggravates the stress concentration at the fiber/matrix interface and finally leads to a catastrophic failure in the composite. From the correlation between the analysis and experimental results, the shear failure mechanism of unidirectional C-f/A356.0 composite can be elucidated qualitatively.
Resumo:
A material model for whisker-reinforced metal-matrix composites is constructed that consists of three kinds of essential elements: elastic medium, equivalent slip system, and fiber-bundle. The heterogeneity of material constituents in position is averaged, while the orientation distribution of whiskers and slip systems is considered in the structure of the material model. Crystal and interface sliding criteria are addressed. Based on the stress-strain response of the model material, an elasto-plastic constitutive relation is derived to discuss the initial and deformation induced anisotropy as well as other fundamental features. Predictions of the present theory for unidirectional-fiber-reinforced aluminum matrix composites are favorably compared with FEM results.
Resumo:
Based on studies on the strain distribution in short-fiber/whisker reinforced metal matrix composites, a deformation characteristic parameter, lambda is defined as a ratio of root-mean-square strain of the reinforcers identically oriented to the macro-linear strain along the same direction. Quantitative relation between lambda and microstructure parameters of composites is obtained. By using lambda, the stiffness moduli of composites with arbitrary reinforcer orientation density function and under arbitrary loading condition are derived. The upper-bound and lower-bound of the present prediction are the same as those from the equal-strain theory and equal-stress theory, respectively. The present theory provides a physical explanation and theoretical base for the present commonly-used empirical formulae. Compared with the microscopic mechanical theories, the present theory is competent for stiffness modulus prediction of practical engineering composites in accuracy and simplicity.
Resumo:
The interlaminar fracture behaviour of carbon fibre-reinforced bismaleimide (BMI) composites prepared by using a new modified BMI matrix has been investigated by various methods. Laminates of three typical stacking sequences were evaluated. Double cantilever beam, end-notch flexure and edge-delamination tension tests were conducted under conventional conditions and in a scanning electron microscope. The strain energy release rates in Mode I and Mode III G(lc) and G(llc), as well as the total strain energy release rate, G(mc), have been determined and found to be higher than those for laminates with an epoxy matrix. Dynamic delamination propagation was also studied. The toughening mechanisms are discussed.
Resumo:
A study of carbon fiber reinforced epoxy composite material with 0° ply or ±45°ply(unnotched or with edge notch) was carried out under static tensile and tension-tensioncyclic loading testing. Static and fatigue behaviour and damage failure modes in unnotched/notched specimens plied in different manners were analysed and compared with each other.A variety of techniques (acoustic emission, two types of strain extensometer, high speed pho-tography, optical microscopy, scanning electron microscope, etc.) were used to examine thedamage of the laminates. Experimental results show that when these carbon/epoxy laminateswith edge notch normal to the direction of the load are axially loaded in static or fatiguetension, the crack does not propagate along the length of notch but is in the interface (fiberdirection). The notch has no substantial effect on the stresses at the unnotched portion. Thedamage failure mechanism is discussed.
Resumo:
Two fiber grating sensors for high-temperature measurements are proposed and experimentally demonstrated. The interrogation technologies of the sensor systems are all simple, low cost but effective. In the first sensor system, the sensor head is comprised of one fiber Bragg grating (FBG) and two metal rods. The lengths of the rods are different from each other. The coefficients of thermal expansion of the rods are also different from each other. The FBG will be strained by the sensor head when the temperature to be measured changes. The temperature is measured based on the wavelength-shifts of the FBG induced by the strain. In the second sensor system, a long-period fiber grating (LPG) is used as the high-temperature sensor head. The LPG is very-high-temperature stable CO2-Aaser-induced grating and has a linear function of wavelength-temperature in the range of 0 - 800 degrees C. A dynamic range of 0 - 800 degrees C and a resolution of 1 degrees C have been obtained by either the first or the second sensor system. The experimental results agree with theoretical analyses. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A novel fiber Bragg grating (FBG) sensor for the measurement of high temperature is proposed and experimentally demonstrated. The interrogation system of the sensor system is simple, low cost but effective. The sensor head is comprised of one FBG and two metal rods. The lengths of the rods are different from each other. The coefficients of thermal expansion of the rods are also different from each other. The FBG will be strained by the sensor head when the temperature to be measured changes. The temperature is measured basis of the wavelength shifts of the FBG induced by strain. A dynamic range of 0-800 degrees C and a resolution of 1 degrees C have been obtained by the sensor system. The experiment results agree with theoretical analyses. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Optical spectroscopic properties of Er3+-doped alkaline-earth metal modified fluoropho sphate glasses have been investigated experimentally for developing broadband fiber and planar amplifiers. The results show a strong correlation between the alkaline-earth metal content and the spectroscopic parameters such as absorption and emission cross sections, full widths at half-maximum and Judd-Ofelt intensity parameters. It is found that strontium ions could have more influences on the Judd-Ofelt intensity parameters and the absorption and emission cross sections than other alkaline-earth metal ions such as Mg2+, Ca2+, Ba2+. The sample containing 23 mol% strontium fluoride exhibits the maximum emission cross section of 7.58 x 10(-21) cm(2), the broadest full width at half-maximum of 65 nm and the longer lifetime of 8.6 ms among the alkaline-earth metal modified fluorophosphates glasses studied. The Judd-Ofelt intensity parameter Omega(6)s, the emission cross sections and the full widths at half-maximum in the Er3+-doped fluorophosphate glasses studied are larger than in the silicate and phosphate glasses.
Resumo:
We report on ultrabroad infrared (IR) luminescences covering the 1000-1700-nm wavelength region, from Bi-doped 75GeO(2) 20RO-5Al(2)O(3) 1B(2)O(3) (R = Sr, Ca, and Mg) glasses. The full width at half-maximum of the IR luminescences excited at 980 nm increases (315 -> 440 -> 510 nm) with the change of alkaline earth metal (Mg2+ -> Ca2+ -> Sr2+). The fluorescence lifetime of the glass samples is 1725, 157, and 264 mu s when R is Sr, Ca, and Mg, respectively. These materials may be promising candidates for broad-band fiber amplifiers and tunable laser resources.
Resumo:
Six-period 4 nm GaN/10 nm AlxGa1-xN superlattices with different Al mole fractions x were prepared on (0001) sapphire substrates by low-temperature metal-organic chemical vapor deposition. The linear electro-optic (Pockels) effect was studied by a polarization-maintaining fiber-optical Mach-Zehnder interferometer system with an incident light wavelength of 1.55 mu m. The measured electro-optic coefficients, gamma(13)=5.60 +/- 0.18 pm/V, gamma(33)=19.24 +/- 1.21 pm/V (for sample 1, x=0.3), and gamma(13)=3.09 +/- 0.48 pm/V, gamma(33)=8.94 +/- 0.36 pm/V (for sample 2, x=0.1), respectively, are about ten times larger than those of GaN bulk material. The enhancement effect in GaN/AlxGa1-xN superlattice can be attributed to the large built-in field at the interfaces, depending on the mole fraction of Al. (C) 2007 American Institute of Physics.
Resumo:
In this paper, a pressure-gradient fiber laser hydrophone is demonstrated. Two brass diaphragms are installed at the end of a metal cylinder as sensing elements. A distributed feedback fiber laser, fixed at the center of the two diaphragms, is elongated or shortened due to the acoustic wave. There are two orifices at the middle of the cylinder. So this structure can work as a pressure-gradient microphone in the acoustic field. Furthermore, the hydrostatic pressure is self-compensated and an ultra-thin dimension is achieved. Theoretical analysis is given based on the electro-acoustic theory. Field trials are carried out to test the performance of the hydrophone. A sensitivity of 100 nm MPa-1 has been achieved. Due to the small dimensions, no directivity is found in the test.
Resumo:
A novel crosslinkable polyurethane is used as the core layer of the electro-optic(E-O) modulator. The refractive index and dispersion of this material have been detected by analyzing the F-P oscillation in transmission spectra. Calculated results from the effective index method are given to design the Mach-Zehnder and straight 5-layer ridge wave-guide device (including the metal electrodes). With light at 1.31 mum being fiber coupled into waveguide, the mode properties of these devices have been demonstrated in a micron control system. The guided mode is accordant with the theoretical analysis.
Resumo:
The mass transfer behaviors of Cd(II), Fe(III), Zn(II), and Eu(III) in sulfuric acid solution using microporous hollow fiber membrane (HFM) containing bis(2,4,4-trimethylpentyl)monothiophosphinic acid (commercial name Cyanex302) were investigated in this paper. The experimental results showed that the values of the mass transfer coefficients (K-w) decreased with an increase of H+ concentration and increased with an increase of extractant Cyanex302 concentration. The mass transfer resistance of Eu3+ was the largest because K-w value of Eu3+ was the smallest. The order of mass transfer rate of metal ions at low pH was Cd > Zn > Fe > Eu. Mixtures of Zn2+ and Eu3+ or of Zn2+ and Cd2+ were well separated in a counter-current circulation experiment using two modules connected in series at different initial acidity and concentration ratio. These results indicate that a hollow fiber membrane extractor is capable of separating the mixture compounds by controlling the acidity of the aqueous solution and by exploiting different mass transfer kinetics. The interfacial activity of Cyanex302 in sulfuric acid solution was measured and interfacial parameters were obtained according to Gibbs adsorption equation.