10 resultados para Experimental model

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fibrosis caused by the host response to long-term transplanted microcapsules and the limitation of traditional L929 cell model for biocompatibility testing inspire the development of an assay of biocompatibility based on macrophage behavior. In this paper, the human monocytic cell line THP-1 was utilized for biocompatibility evaluation of microcapsule materials. The cell viability and secretion of nitric oxide (NO) and cytokines served as index of biocompatibility were assayed. It was found that the evaluated microcapsule materials had no effect on the stimulation of NO and cytokines secretion, which meant that these materials were biocompatible. Furthermore, it suggests the THP-1 cell a convenient in vitro experimental model that might be useful for long-term predictions of material biocompatibility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An investigation of fiber/matrix interfacial fracture energy is presented in this paper. Several existing theoretical expressions for the fracture energy of interfacial debonding are reviewed. For the single-fiber/matrix debonding and pull-out experimental model, a study is carried out on the effect of interfacial residual compressive stress and friction on interface cracking energy release rate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nematoda is a metazoan group with extremely high diversity only next to Insecta. Caenorhabditis elegans is now a favorable experimental model animal in modern developmental biology, genetics and genomics; studies. However, the phylogeny of Nematoda and the phylogenetic position of the phylum within animal kingdom have long been in debate. Recent molecular phylogenetic studies gave great challenges to the traditional nematode classification. The new phylogenies not only placed the Nematoda in the Ecdysozoan and divided the phylum into five clades, but also provided new insights into animal molecular identification and phylogenetic biodiversity studies. The present paper reviews major progress and remaining problems in the current molecular phylogenetic studies of Nematoda, and prospects the developmental tendencies of this field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A newly developed experimental model called simulation of real mission was used to explore law of time perception and user endurance for feedback delay under Network-Supported Co-operative Work. Some non-technological factors influencing time perception and user endurance (mission type、difficulty level、feedback method、partner type、gender and A type behavior pattern) were also examined. Results of the study showed that: (1) Under condition of waiting without feedback, mission type and difficulty level demonstrated significant main effects on judgment of waiting duration. People will wait more time to receive partner's feedback if he or she perceives that partner's task is difficult, and the longest waiting duration (LWD) in the mission of computation is longer than the LWD in the mission of proof searching. (2) Under condition of waiting with feedback, experimental data perfectly supported Vierordt's Law: short duration is underestimated, long duration is overestimated, only proper duration (2-6 second) can be estimated correctly. The proper duration will vary with the changing of difficulty levels of mission. More long the waiting duration is, more estimation error will be occurred. The type difference of partner has no significant effect on the law of time perception. (3) Under condition of waiting with feedback, non-technology factors can significantly effect user's endurance. When subjects were told their partner was human, mission type and difficulty level of mission could significantly effect user's endurance. When subjects were told their partner was computer, A type behavior pattern and difficulty level of mission could significantly effect user's endurance. The two-way interaction effect between A type behavior pattern and gender was detected.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Investigation of kerosene combustion in a Mach 2.5 flow was carried out using a model supersonic combustor with cross-section area of 51 mm × 70 mm and different integrated fuel injector/flameholder cavity modules. Experiments with pure liquid atomization and with effervescent atomization were characterized and compared. Direct photography, Schlieren imaging, and planar laser induced fluorescence (PLIF) imaging of OH radical were utilized to examine the cavity characteristics and spray structure. Schlieren images illustrate the effectiveness of gas barbotage in facilitating atomization and the importance of secondary atomization when kerosene sprays interacting with a supersonic crossflow. OH PLIF images further substantiate our previous finding that there exists a local high-temperature radical pool within the cavity flameholder, and this radical pool plays a crucial role in promoting kerosene combustion in a supersonic combustor. Under the same operation conditions, comparison of the measured static pressure distributions along the combustor also shows that effervescent atomization generally leads to better combustion performance than the use of pure liquid atomization. Furthermore, the present results demonstrate that the cavity characteristics can be different in non-reacting and reacting supersonic flows. As such, the conventional definition of cavity characteristics based on non-reacting flows needs to be revised.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

专门设计了可用于研究箭基组合循环发动机(RBCC)在起动阶段(Ma=0)所使用的引射火箭性能的实验装置.作为初步试验,研究了不同工况的引射热喷流(一次流)和被引射空气(二次流)之间混合的演变、发展过程,找出不同来流条件下影响引射性能的主要参数,为最终探明引射火箭的最佳工作条件打下基础,同时根据试验结果提出了促进一、二次流混合的可行方案,便于下一步深入研究.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work focused on improving the engine performance with different fuel equivalence ratios and fuel injections. A scramjet model with strut/cavity integrated configurations was tested under Mach 5.8 flows. The results showed that the strut may sreve as an effective tool in a kerosene-fueled scramjet. The integration of strut/cavities also had great effect on stablizing the combustion in a wide range of fuel equivalence ratio. The one-sdimensional analysis method was used to analyze the main characteristics of the model. The two-stage fuel injection should have better performance in increasing the chemical reaction rate in the first cavity region.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A side-wall compression scramjet model with different combustor geometries has been tested in a propulsion tunnel that typically provides the testing flow with Mach number of 5.8, total temperature of 1800K, total pressure of 4.5MPa and mass flow rate of 4kg/s. This kerosene-fueled scramjet model consists of a side-wall compression inlet, a combustor and a thrust nozzle. A strut was used to increase the contraction ratio and to inject fuels, as well as a mixing enhancement device. Several wall cavities were also employed for flame-holding. In order to shorten the ignition delay time of the kerosene fuel, a little amount of hydrogen was used as a pilot flame. The pressure along the combustor has an evident raise after ignition occurred. Consequently thrust was observed during the fuel-on period. However, the thrust was still less than the drag of the scramjet model. For this reason, the drag variation produced by different strut and cavities was tested. Typical results showed that the cavities do not influence the drag so much, but the length of the strut does.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Investigation of kerosene combustion in a Mach 2.5 flow was carried out using a model supersonic combustor with cross-section area of 51 mm?70 mm, with special emphases on the characterization of effervescent atomization and the flameholdering mechanism using different integrated fuel injector/flameholder cavity modules. Direct photography, Schlieren imaging, and Planar Laser Induced Fluorescence (PLIF) imaging of OH were utilized to examine the cavity characteristics and spray structure, with and without gas barbotage. Schlieren images illustrate the effectiveness of gas barbotage in facilitating atomization and the importance of secondary atomization when kerosene sprays interacting with a supersonic crossflow. OH-PLIF images further substantiate our previous finding that there exists a local high temperature radical pool within the cavity flameholder and this radical pool plays a crucial role in promoting kerosene combustion in a supersonic combustor. The present results also demonstrate that the cavity characteristics can be different in non-reacting and reacting supersonic flows. As such, the conventional definition of cavity characteristics based on non-reacting flows needs to be revised.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An analytical model for the spin filtering transport in a ferromagnetic-metal - Al2O3 - n-type semiconductor tunneling structure has been developed, and demonstrated that the ratio of the helicity-modulated photo-response to the chopped one is proportional to the sum of the relative asymmetry in conductance of two opposite spin-polarized tunneling channels and the MCD effect of the ferromagnetic metal film. The performed measurement in an iron-metal/Al2O3/n-type GaAs tunneling structure under the optical spin orientation has verified that all the aspects of the experimental results are very well in accordance with our model in the regime of the spin filtering. After the MCD effect of the iron film is calibrated by an independent measurement, the physical quantity of Delta G(t)/G(t) (Delta G(t) = G(t)(up arrow) - G(t)(down arrow) is the difference of the conductance between two opposite spin tunneling channels, G(t) =( G(t)(up arrow) + G(t)(down arrow))/2 the averaged tunneling conductance), which concerns us most, can be determined quantitatively with a high sensitivity in the framework of our analytical model. Copyright (c) EPLA, 2008.