27 resultados para Enteric nervous system
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
We have cloned a mouse homologue (designated Myak) of the yeast protein kinase YAK1. The 1210 aa open reading frame contains a putative protein kinase domain, nuclear localization sequences and PEST sequences. Myak appears to be a member of a growing family of YAK1-related genes that include Drosophila and human Minibrain as well as a recently identified rat gene ANPK that encode a steroid hormone receptor interacting protein. RNA blot analysis revealed that Myak is expressed at low levels ubiquitously but at high levels in reproductive tissues, including testis, epididymis, ovary, uterus, and mammary gland, as well as in brain and kidney. In situ hybridization analysis on selected tissues revealed that Myak is particularly abundant in the hormonally modulated epithelia of the epididymis, mammary gland, and uterus, in round spermatids in the testis, and in the corpora lutea in the ovary, Myak is also highly expressed in the aqueduct of the adult brain and in the brain and spinal cord of day 12.5 embryos, Mol. Reprod. Dev. 55:372-378, 2000. (C) 2000 Wiley-Liss, Inc.
Resumo:
A novel fish chemokine receptor gene, chemokine (C-X-C motif) receptor 3 (CXCR3)-like was isolated from the grass carp Ctenopharyngodon idella , with its full-length genomic sequence. The cDNA of grass carp CXCR3-like (gcCXCR3-like) consists of 1261 bp with a 49bp 5'-UTR and a 189 bp 3'-UTR. An open reading frame of 1023 bp encodes a 341-amino acid peptide, with seven transmembrane helices. The deduced amino acid sequence showed the same sequence identities (37.8%) with its counterparts in goat and human. The gcCXCR3-like gene consists of two exons, with one intervening intron, spaced over approximately 2 kb of genomic sequence. Phylogenetic analyses clearly demonstrated that the gcCXCR3-like resembles the CXCR3s of other vertebrates. Real-time PCR analysis showed that gcCXCR3-like was expressed in all tested organs except heart and the expression level of gcCXCR3-like was highest in brain. Flow cytometric analyses showed the positive rate of labelled leukocytes from the healthy grass carp was 17.3%, and the labelled leukocytes were divided into three types by cell sorting. Immunohistochemical localization revealed that gcCXCR3-like expressed in whole brain regions including cerebel, diencephalon, medulla oblongata, optic lobe, and rhinencephalon, and that the labelled leukocytes are actually populations of monocyte and/or phagocyte, lymphocyte and the granulocyte. It is considered that fish CXCR expression and their function may need to be investigated in both nervous and immune systems. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide abundantly expressed in the central nervous system and involved in regulating neurogenesis and neuronal signal transduction. The amino acid sequence of PACAP is extremely conserved across vertebrate species, indicating a strong functional constraint during the course of evolution. However, through comparative sequence analysis, we demonstrated that the PACAP precursor gene underwent an accelerated evolution in the human lineage since the divergence from chimpanzees, and the amino acid substitution rate in humans is at least seven times faster than that in other mammal species resulting from strong Darwinian positive selection. Eleven human-specific amino acid changes were identified in the PACAP precursors, which are conserved from murine to African apes. Protein structural analysis suggested that a putative novel Deuropeptide might have originated during human evolution and functioned in the human brain. Our data suggested that the PACAP precursor gene underwent adaptive changes during human origin and may have contributed to the formation of human cognition.
Resumo:
MRGX2, a G-protein-coupled receptor, is specifically expressed in the sensory neurons of the human peripheral nervous system and involved in nociception. Here, we studied DNA polymorphism patterns and evolution of the MRGX2 gene in world-wide human populations and the representative nonhuman primate species. Our results demonstrated that MRGX2 had undergone adaptive changes in the path of human evolution, which were likely caused by Darwinian positive selection. The patterns of DNA sequence polymorphisms in human populations showed an excess of derived substitutions, which against the expectation of neutral evolution, implying that the adaptive evolution of MRGX2 in humans was a relatively recent event. The reconstructed secondary structure of the human MRGX2 revealed that three of the four human-specific amino acid substitutions were located in the extra-cellular domains. Such critical substitutions may alter the interactions between MRGX2 protein and its ligand, thus, potentially led to adaptive changes of the pain-perception-related nervous system during human evolution. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Neuropsin (kallikrein 8, ELKS) is a secreted-type serine protease preferentially expressed in the central nervous system and involved in learning and memory. Its splicing pattern is different in human and mouse, with the longer form (type II) only express
Resumo:
Kallikrein 8 (KLK8) is a serine protease functioning in the central nervous system, and essential in many aspects of neuronal activities. Sequence comparison and gene expression analysis among diverse primate species identified a human-specific splice for
Resumo:
An opioid peptide, which shares similarity with mammalian hemorphins, has been identified from the synganglia (central nervous system) of the hard tick, Amblyomma testindiarium. Its primary sequence was established as LVVYPWTKM that contains a tetrapeptide sequence Tyr-Pro-Trp-Thr of hemorphin-like opioid peptides. By hot-plate bioassay, the purified peptide and synthetic peptide displayed dose-related antinociceptive effect in mice, as observed for other hemorphin-like opioid peptides. This is the first opioid peptide identified from ticks. Ticks may utilize the opioid peptide in their strategy to escape host immuno-surveillance as well as in inhibiting responses directed against themselves. (c) 2004 Elsevier Inc. All rights reserved.
Resumo:
Many neuroendocrine peptides that are distributed in amphibian gastrointestinal tract and central nervous system are also found in amphibian skins, and these peptides are classified into skin-gut-brain triangle peptides, such as bombesins, gastrin-releasi
Resumo:
The evolutionarily conserved Nkx6 family transcription factors play important roles in the patterning of the central nervous system (CNS) and pancreas in vertebrates. In this study, we describe the cloning and expression patterns of the three Nkx6 family
Resumo:
Regulation of neuronal gene expression is critical to nervous system development. REST (RE1-silencing transcription factor) regulates neuronal gene expression through interacting with a group of corepressor proteins including REST corepressors (RCOR). Here we show that Xenopus RCOR2 is predominantly expressed in the developing nervous system. Through a yeast two-hybrid screen, we isolated Xenopus ZMYND8 (Zinc finger and MYND domain containing 8) as an XRCOR2 interacting factor. XRCOR2 and XZMYND8 bind each other in co-immunoprecipitation assays and both of them can function as transcriptional repressors. XZMYND8 is co-expressed with XRCOR2 in the nervous system and overexpression of XZMYND8 inhibits neural differentiation in Xenopus embryos. These data reveal a RCOR2/ZMYND8 complex which might be involved in the regulation of neural differentiation. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The BRUNOL/CELF family of RNA-binding proteins plays important roles in post-transcriptional regulation and has been implicated in several developmental processes. In this study, we describe the cloning and expression patterns of five Brunol genes in Xenopus laevis. Among them, only Brunol2 is maternally expressed and the zygotic expression of the other four Brunol genes starts at different developmental stages. During Xenopus development, Brunol1, 4-5 are exclusively expressed in the nervous system including domains in the brain, spinal cord, optic and otic vesicles. Brunol2 and 3 are expressed in both the somatic mesoderm and the nervous system. Brunol2 is also extensively expressed in the lens. In transfected Hela cells, BRUNOL1, 2 and 3 proteins are localized in both the cytoplasm and the nucleus, while BRUNOL4 and 5 are only present in the cytoplasm, indicating their different functions.
Resumo:
Background and objectives: Pentobarbital and ketamine are commonly used in animal experiments, including studies on the effects of ageing on the central nervous system. The electroencephalogram is a sensitive measure of brain activity. The present study i
Resumo:
The central nervous system exhibits remarkable plasticity in early life. Prenatal morphine exposure may induce adverse behavioral effects on the neonate and the developing offspring. In the present study, we investigated the effect of prenatal morphine exposure (daily from embryonic days 12-16, 20 mg/kg) on 11-day-old chicks using two forms of spatial paradigms: one trial detour behavior task in which animals must bypass an obstacle to reach the desired goal without any training and detour learning task which required several trials of training to reach the detour criterion. The results showed that, on the condition that chicks could successfully detour in the first trial, morphine exposed chicks exhibited longer detour latency to finish the task, coupled by a preference for turning right versus turning left. In contrast, no significant difference in learning and memory was found in detour learning task between morphine exposed chicks and saline chicks. These findings suggest specific behavioral changes associated with prenatal exposure to opioids during mid to late gestation, also raise attention to the possible health hazard from pregnancy drug use in everyday life. (C) 2010 ISDN. Published by Elsevier Ltd. All rights reserved.
Resumo:
Pituitary adenylate cyclase-activating polypeptide (PACAP) which belongs to the secretin/glucagon/ VIP family has been originally isolated from the sheep hypothalamus on the basis of its ability to stimulate cAMP formation in culture rat anterior pituitary cells. Post-translational processing of the PACAP precursor generates two biologically active molecular forms, PACAP-38 and PACAP-27. The primary structure of PACAP has been remarkably conserved during evolution. The sequence of PACAP-27 exhibits substantial similarities with those of vasoactive intestinal polypeptide (VIP), glucagon and secretin. The gene encoding the PACAP precursor is widely expressed in brain and various peripheral organs, notably in endocrine glands, gastro-intestinal, urogenital tracts and respiratory system. In vivo, and in vitro studies have shown that PACAP exhibits multiple activities especially a trophic activity during ontogenesis, notably in the adrenal medulla and the central nervous system. The biological effects of PACAP are mediated through three distinct receptor subtypes which exhibit differential affinities for PACAP and VIP. The PAC1 receptor, which shows high selectivity for PACAP, is coupled to several transduction systems. In contrast, VPAC1 and VPAC2, which bind with the same affinity for PACAP and VIP, are mainly coupled to the adenylyl cyclase pathway. In conclusion, PACAP is neuropeptide, and it functions as a hypothalamic hormone, neurohormone, neuromodulator, vasodilator, neurotransmitter or trophic factor in the brain and the various organs.
Resumo:
Myelin basic protein (MBP), as a major component of the myelin sheath, has been revealed to play an important role informing and maintaining myelin structure in vertebrate nervous system. In teleost, hypothalamus is an instinctive brain center and plays significant roles in many physiological functions, such as energy metabolism, growth, reproduction, and stress response. In comparison with other MBP identified in vertebrates, a smallest MBP is cloned and identified from the orange-spotted grouper hypothalamic cDNA plasmid library in this study. RT-PCR analysis and Western blot detection indicate that the EcMBP is specific to hypothalamus, and expresses mainly in the tuberal hypothalamus in adult grouper. Immunofluorescence localization suggests that EcMBP should be expressed by oligodendrocytes, and the expressing cells should be concentrated in hypothalamus and the area surrounding hypothalamus, such as NPOpc, VC, DP, NLTm, and NDLI The studies on EcMBP expression pattern and developmental behaviour in the brains of grouper embryos and larvae reveal that the EcMBP-expressing cells are only limited in a defined set of cells on the border of hypothalamus, and suggest that the EcMBP-expressing cells might be a subpopulation of oliaodendrocyte progenitor cells. This study not only identifies a smallest MBP isoform specific to hypothalamus that can be used as a molecular marker of oligodendrocytes in fish, but also provides new insights for MBP evolution and cellular distribution. (C) 2007 Elsevier B.V.. All rights reserved.