102 resultados para Energy dispersive x-ray
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The X-ray spectra of Nb surface induced by Arq+ (q = 16,17) ions with the energy range from 10 to 20 keV/q were studied by the optical spectrum technology. The experimental results indicate that the multi-electron excitation occurred as a highly charged Ar16+ ion was neutralized below the metal surface. The K shell electron of Ar16+ was excited and then de-excited cascadly to emit K X-ray. The intensity of the X-ray emitted from K shell of the hollow Ar atom decreased with the increase of projectile kinetic energy. The intensity of the X-ray emitted from L shell of the target atom Nb increased with the increase of projectile kinetic energy. The X-ray yield of Ar17+ is three magnitude orders larger than that of Ar16+.
Resumo:
One-dimensional X-1-Y2SiO5:Ce3+ and -Tb3+ nanofibers and quasi-one-dimensional X-1-Y2SiO5:Ce3+ and -Tb3+ microbelts have been prepared by a simple and cost-effective electrospinning process. X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry, transmission electron microscopy, high-resolution transmission electron microscopy, photoluminescence (PL), and cathodoluminescence spectra were used to characterize the samples. SEM results indicate that the as-prepared fibers and belts are smooth and uniform with a length of several tens to hundreds of micrometers, whose diameters decrease after being annealed at 1000 degrees C for 3 h. Under ultraviolet excitation and low-voltage electron beam excitation, the doped rare earth ions show their characteristic emission, that is, Ce3+ 5d-4f and Tb3+ D-5(4)-F-7(J) (J = 6, 5 4, 3) transitions, respectively.
Resumo:
The laser-solidified microstructural and compositional characterization and phase evolution during tempering at 963 K were investigated using an analytical transmission electron microscope with energy dispersive X-ray analysis. The cladded alloy, a powder mixture of Fe, Cr, W, Ni, and C with a weight ratio of 10:5:1:1:1, was processed with a 3 kW continuous wave CO2 laser. The processing parameters were 16 mm/s beam scanning speed, 3 mm beam diameter. 2 kW laser power, and 0.3 g/s feed rate. The coating was metallurgically bonded to the substrate, with a maximum thickness of 730 mu m, a microhardness of about 860 Hv and a volumetric dilution ratio of about 6%. Microanalyses revealed that the cladded coating possessed the hypoeutectic microstructure comprising the primary dendritic gamma-austenite and interdendritic eutectic consisted of gamma-austenite and M7C3 carbide. The gamma-austenite was a non-equilibrium phase with extended solid solution of alloying elements and a great deal of defect structures, i.e. a high density of dislocations, twins, and stacking faults existed in gamma phase. During high temperature aging, in situ carbide transformation occurred of M7C3 to M23C6 and M6C. The precipitation of M23C6, MC and M2C carbides from austenite was also observed.
Resumo:
A high toughness wear resistant coating is produced by laser clad Fe-Cr-W-Ni-C alloys. The microstructural and compositional features of the laser-solidified microstructures and phase evolutions occurring during high temperature tempering at 963 K were investigated by using analytical electron microscopy with energy dispersive X-ray analysis. The clad coating possesses the hypereutectic microstructure consisted of M7C3 + (Y + M7C3) Du ring high temperature aging, the precipitation of M23C6 and M2C in austenite and in situ transformation of dendritic M7C3 to M23C6 and eutectic M7C3 to M6C occurred. The laser clad coating reveals an evident secondary hardening and superior impact wear resistance.
Resumo:
The microstructural and compositional features of the laser-solidified microstructures and phase evolutions occurring during high temperature tempering were investigated by using analytical electron microscopy with energy dispersive X-ray analysis. The cladded alloy, a powder mixture of Fe, Cr, W, Ni and C with a weight ratio of 10:5:1:1:1, was processed with a 3 kW continuous wave CO2 laser. The cladded coating possessed the hypoeutectic microstructure of the primary dendritic gamma-austenite and interdendritic eutectic consisting of (gamma+M7C3). The gamma-austenite is a nonequilibrium phase with extended solid solution of alloying elements. And, a great deal of fine structures, i.e., a high density of dislocations, twins, and stacking faults existed in austenite phase. During high temperature aging, the precipitation of M23C6, MC and M2C in austenite and in situ transformation of M7C3(+gamma) --> M23C6 and M7C3+gamma --> M6C occurred. The laser clad coating revealed an evident secondary hardening and superior impact wear resistance.
Resumo:
This study focuses on mechanism of ceramic coating on Al-Si alloys with bulk primary Si using plasma electrolytic oxidation (PEO) technology. Al-Si alloys with 27-32% Si in weight were used as substrates. The morphologies, composition and microstructure of PEO coatings were investigated by scanning electron microscopy (SEM) with energy dispersive X-ray system (EDX). Results showed that the PEO process had four different stages. The effect of bulk Si is greatly on the morphology and composition of coatings at first three stages. Anodic oxide films formed on Al and Si phases, respectively. When the voltage exceeded 40 V, glow appeared and concentrated on the localized zone of interface of Al and Si phase. Al-Si-O compounds formed and covered on the dendrite Si phase surface, and the coating on bulk Si, which was silicon oxide, was rougher than that on other phase. If the treatment time was long enough, the coatings with uniform surface morphologies and elements distribution will be obtained but the microstructure of inner layer is looser due to the bulk Si.
Resumo:
We investigate the mechanism of selective metallization on glass surfaces with the assistance of femtosecond laser irradiation followed by electroless plating. Irradiation of femtosecond laser makes it possible to selectively deposit copper microstructures in the irradiated area on glass surfaces coated with silver nitrate films. The energy-dispersive X-ray (EDX) analyses reveal that silver atoms are produced on the surface of grooves formed by laser ablation, which serve as catalysis seeds for subsequent electroless copper plating. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The earliest Chinese ancient glasses before the West Han Dynasty (200 BC) from different regions are studied. The glass samples were unearthed from Hunan, Hubei, Yunnan, Sichuan, Guizhou, Guangdong and Xinjiang of China. The chemical composition of these glasses samples is analyzed by proton induced X-ray emission (PIXE) technique, energy dispersive X-ray fluorescence (EDXRF) method and inductively coupled plasma atomic emission spectrometry (ICP-AES). It is shown that the glass chemical compositions belong to barium-lead silicate BaO-PbO-SiO2, potash soda lime silicate K2O (Na2O)-CaO-SiO2 (K2O/Na2O > 1), soda potash lime silicate Na2O (K2O)-CaO-SiO2 (K2O/Na2O < 1) and potash silicate K2O-SiO2 glass systems, respectively. The origins of the earliest Chinese ancient glasses are discussed from the archaeological and historical points of view. These four types of Chinese ancient glasses were all made in Chinese territory using local raw materials. The glass preparation technology was related to the Chinese ancient bronze metallurgy and proto-porcelain glaze technology. The glass technology relationship between the East and the West is analyzed at the same time.
Resumo:
结合外束质子激发X荧光(proton induced X-ray emission,PIXE)和能量色散X射线荧光(energy dispersive X-ray emission,EDXRF)分析技术,对中国新疆、湖北、四川、广东出土的古代镶嵌玻璃珠的化学成分进行了检测.结果表明:新疆拜城克孜尔墓地出土的西周-春秋时期镶嵌玻璃珠为CaO-MgO-SiO2玻璃,战国时期中国境内的PbO-BaO-SiO2和Na2O-CaO-SiO2镶嵌玻璃珠是同时存在的.本文亦对相关问题进行了一些讨论,并提出了部分今后的工
Resumo:
TiO2 single layers and TiO2/SiO2 high reflectors (HR) are prepared by electron beam evaporation at different TiO2 deposition rates. It is found that the changes of properties of TiO2 films with the increase of rate, such as the increase of refractive index and extinction coefficient and the decrease of physical thickness, lead to the spectrum shift and reflectivity bandwidth broadening of HR together with the increase of absorption and decrease of laser-induced damage threshold. The damages are found of different morphologies: a shallow pit to a seriously delaminated and deep crater, and the different amorphous-to-anatase-to-rutile phase transition processes detected by Raman study. The frequency shift of Raman vibration mode correlates with the strain in. film. Energy dispersive X-ray analysis reveals that impurities and non-stoichiometric defects are two absorption initiations resulting to the laser-induced transformation. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
Raman scattering (RS) experiments have been performed for simultaneous determination of Mn composition and strain in Ga1-xMnxSb thin films grown on GaSb substrate by liquid phase epitaxy technique. The Raman spectra obtained from various Ga1-xMnxSb samples show only GaSb-like phonon modes whose frequency positions are found to have Mn compositional dependence. With the combination of epilayer strain model, RS and energy dispersive x-ray (EDX) experiments, the compositional dependence of GaSb-like LO phonon frequency is proposed both in strained and unstrained conditions. The proposed relationships are used to evaluate Mn composition and strain from the Ga1-xMnxSb samples. The results obtained from the RS data are found to be in good agreement with those determined independently by the EDX analysis. Furthermore, the frequency positions of MnSb-like phonon modes are suggested by reduced-mass model. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Mn-including InAs quantum dots (QDs) were fabricated by Mn-ion implantation and subsequent annealing. The optical, compositional, and structural properties of the treated samples were analyzed by photoluminescence (PL) and microscopy. Energy dispersive X-ray (EDX) results indicate that Mn ions diffused from the bulk GaAs into the InAs QDs during annealing, and the diffusion appears to be driven by the strain in the InAs QDs. The temperature dependence of the PL of Mn-including InAs QD samples exhibits QDs PL characteristics. At the same time, the heavy Mn-including InAs QD samples have ferromagnetic properties and high T-c. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We report the synthesis and characterization of Zn-doped InN nanorods by metal-organic chemical vapor deposition. Electron microscopy images show that the InN nanorods are single-crystalline structures and vertically well-aligned. Energy-dispersive X-ray spectroscopy analyses suggest that Zn ions are distributed nonhomogenously in InN nanorods. Simulations based on diffusion model show that the doping concentration along the radial direction of InN nanorod is bowl-like from the exterior to the interior, the doping concentration decreases, and Such dopant distribution result in a bimodal EDXS spectrum of Zn across the nanorod. The study of the mechanism of doping effect is useful for the design of InN-based nanometer devices. Also, high-quality Zn-doped InN nanorods will be very attractive as building blocks for nano-optoelectronic devices.'
Resumo:
In-situ energy dispersive x-ray diffraction on ZnS nanocrystalline was carried out under high pressure by using a diamond anvil cell. Phase transition of wurtzite of 10 nm ZnS to rocksalt occurred at 16.0 GPa, which was higher than that of the bulk materials. The structures of ZnS nanocrystalline at different pressures were built by using materials studio and the bulk modulus, and the pressure derivative of ZnS nanocrystalline were derived by fitting the equation of Birch-Murnaghan. The resulting modulus was higher than that of the corresponding bulk material, which indicates that the nanomaterial has higher hardness than its bulk materials.
Resumo:
GaN nanowires have been grown with and without In as an additional source. The effects of In surfactant on the crystal quality and photoluminescence property of GaN nanowires are reported for the first time. X-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive x-ray spectroscopy, and photoluminescence measurements are employed to analyse the products. The results show that introducing a certain amount of In surfactant during the growth process can improve the crystal quality of the GaN nanowires, and enhance the photolurainescence of them. In addition, the as-prepared GaN nanowires have the advantage of being easy to be separated, which will benefit the subsequent nanodevice fabrication.