144 resultados para Electromagnetic fields.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
We analyze the electromagnetic spatital distributions and address an important issue of the transmission properties of spherical transverse-electric (TE) and transverse-magnetic (TM) eigenmodes within a tapered hollow metallic waveguide in detail. Explicit analytical expressions for the spatital distributions of electromagnetic field components, attenuation constant, phase constant and wave impedance are derived. Accurate eigenvalues obtained numerically are used to study the dependences of the transmission properties on the taper angle, the mode as well as the length of the waveguide. It is shown that all modes run continuously from a propagating through a transition to an evanescent region and the value of the attenuation increases as the distance from the cone vertex and the cone angle decrease. A strict distinction between pure propagating and pure evanescent modes cannot be achieved. One mode after the other reaches cutoff in the tapered hollow metallic waveguide as the distance from the cone vertex desreases. (C) 2008 Optical Society of America
Resumo:
In the present study, we examined the effects of extremely low-frequency (ELF) electromagnetic fields on morphine-induced conditioned place preferences in rats. During the conditioning phase (12 days), three groups of rats were placed in a sensory cue-defined environment paired with morphine (10 mg/kg, i.p.) following exposure to either 20 Hz (1.80 mT) or 50 Hz (2.20 mT) or sham electromagnetic fields for 60 min/day, respectively, and were placed in another sensory cue-defined environment paired with physiological saline (1 ml/kg, i.p.) without exposure to electromagnetic fields. After finishing 12 days of conditioning, preference tests for the morphine-paired place were performed during a 10-day withdrawal period. The exposure to electromagnetic fields substantially potentiated morphine-induced place preferences in rodents, suggesting that ELF electromagnetic fields can increase the propensity for morphine-induced conditioned behaviors. (C) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
This paper deals with a theoretical analysis of the reflection and refraction of light at the interface of a bicrystal by use of Maxwell's equations. For a general case, the formulas of Snell's Law and the four Fresnel coefficients for the reflection and refraction of extraordinary light at the interface of a uniaxial bicrystal are derived for the first time, as well as the Brewster angle value. The condition for total reflection is presented and the electromagnetic fields distributions at both sides of a bicrystal are presented when total reflection occurs.
Resumo:
碳纳米管的小直径、高纵横比、高强度和高弹性、优良的耐磨损性能以及独特的电学和化学特性,使其成为高分辨率原子力显微镜的理想探针针尖。本文根据制作工艺的特点,综述现有碳纳米管探针的代表性研究和制作方法:组装式和生长式。组装式是通过手工、电场或磁场的方式将制备好的碳纳米管粘附到常规硅探针的末端;而生长式是在常规硅探针末端或悬臂梁上定点催化生长出一定直径和长度的CNT。最后指出这些方法目前存在的主要问题。
Resumo:
As an important branch of electrical prospecting method, the artificial source frequency domain electromagnetism method has received more and more attention. But when conducts the fundamental research, people often isolated study some concrete method, so the research results of one method are very difficult to apply to another method directly. This article will possess the artificial source frequency domain EM method to an 1D model simply. It is stratified medium model, with an electric or magnetic source in or outside of it. Then take the horizontal electric dipole source as an example to introduce how to computing the EM field in stratified medium. Because layer matrix is the key of establishing equations, so we call it the layer-matrix method. The key of layer-matrix method is establishing equations by using layer matrixes in wavenumber(kx, ky, z) domain, then obtains the electromagnetic field value of wavenumber domain. After Fourier transform, we can get electromagnetic field of any position in spatial domain. The layer matrix technique theoretically can calculate electromagnetic field of any position for any source, is suitable for many kinds of electromagnetic method. After introduction of the layer matrix method, this article has done some CSAMT, MCSEM and Wireless Electro-Magnetic Method (WEM) modeling with layer matrix method separately. In CSAMT modeling, we get electromagnetic field dissemination characteristics considering wave number of the air, and obtain three-dimensional distribution characteristics of the electromagnetic field. In MCSEM modeling, we get electromagnetic field dissemination characteristics with and without considering the airwave, and obtain three-dimensional distribution characteristics of electromagnetic field. In WEM modeling, we get electromagnetic field’s difference between considering the ionosphere and not considering it, and recognize the ionosphere’s influence of electromagnetic field. With the layer matrix technique, we have got some new understandings of EM dissemination rules of different situations. All analysis results indicate that the layer-matrix technique is credible and effective, and are worthy of further thorough research and development.
Resumo:
According to the method of path integral quantization for the canonical constrained system in Becchi-Rouet-Stora-Tyutin scheme, the supersymmetric electromagnetic interaction system was quantized. Both the Hamiltonian of the supersymmetric electromagnetic interaction system in phase space and the quantization procedure were simplified. The BRST generator was constructed, and the BRST transformations of supersymmetric fields were gotten; the effective action was calculated, and the generating functional for the Green function was achieved; also, the gauge generator was constructed, and the gauge transformation of the system was obtained. Finally, the Ward-Takahashi identities based on the canonical Noether theorem were calculated, and two relations between proper vertices and propagators were obtained.
Resumo:
Based on the 'average stress in the matrix' concept of Mori and Tanaka (:Mori, T., Tanaka, K., 1973. Average stress in matrix and average elastic energy of materials with misfitting inclusion. Acta Metall. 21, 571-580) a micromechanical model is presented for the prediction of the elastic fields in coated inclusion composites with imperfect interfaces. The solutions of the effective elastic moduli for this kind of composite are also obtained. In two kinds of composites with coated particulates and fibers, respectively, the interface imperfections are takes to the assumption that the interface displacement discontinues are linearly related to interface tractions like a spring layer of vanishing thickness. The resulting effective shear modulus for each material and the stress fields in the composite are presented under a transverse shear loading situation.
Resumo:
A two-dimensional axisymmetric numerical model is presented to study the influence of local magnetic fields on P-doped Si floating zone melting crystal growth in microgravity. The model is developed based on the finite difference method in a boundary-fitted curvilinear coordinate system. Extensive numerical simulations are carried out, and parameters studied include the curved growth interface shape and the magnetic field configurations. Computed results show that the local magnetic field is more effective in reducing the impurity concentration nonuniformity at the growth interface in comparison with the longitudinal magnetic field. Moreover, the curved growth interface causes more serious impurity concentration nonuniformity at the growth interface than the case with a planar growth interface.
Resumo:
The property of crystal depends seriously on the solution concentration distribution near the growth surface of a crystal. However, the concentration distributions are affected by the diffusion and convection of the solution. In the present experiment, the two methods of optical measurement are used to obtained velocity field and concentration field of NaClO3 solution. The convection patterns in sodium chlorate (NaClO3) crystal growth are measured by Digital Particle image Velocimetry (DPIV) technology. The 2-dimentional velocity distributions in the solution of NaClO3 are obtained from experiments. And concentration field are obtained by a Mach-Zehnder interferometer with a phase shift servo system. Interference patterns were recorded directly by a computer via a CCD camera. The evolution of velocity field and concentration field from dissolution to crystallization are visualized clearly. The structures of velocity fields were compared with that of concentration field.
Resumo:
In this paper, the real-time deformation fields are observed in two different kinds of hole-excavated dog-bone samples loaded by an SHTB, including single hole sample and dual holes sample with the aperture size of 0.8mm. The testing system consists of a high-speed camera, a He-Ne laser, a frame grabber and a synchronization device with the controlling accuracy of I microsecond. Both the single hole expanding process and the interaction of the two holes are recorded with the time interval of 10 mu s. The observed images on the sample surface are analyzed by newly developed software based on digital correlation theory and a modified image processing method. The 2-D displacement fields in plane are obtained with a resolution of 50 mu m and an accuracy of 0.5 mu m. Experimental results obtained in this paper are proofed, by compared with FEM numerical simulations.
Resumo:
This paper presents a method for the calculation of two-dimensional elastic fields in a solid containing any number of inhomogeneities under arbitrary far field loadings. The method called 'pseudo-dislocations method', is illustrated for the solution of interacting elliptic inhomogeneities. It reduces the interacting inhomogeneities problem to a set of linear algebraic equations. Numerical results are presented for a variety of elliptic inhomogeneity arrangements, including the special cases of elliptic holes, cracks and circular inhomogeneities. All these complicated problems can be solved with high accuracy and efficiency.
Resumo:
In this paper, the calculated results about the propagation properties of electromagnetic wave in a plasma slab are described. The relationship of the propagation properties with frequencies of electromagnetic wave, and parameters of plasma (electron temperature, electron density, dimensionless collision frequency and the size of the plasma slab) is analyzed.
Resumo:
In this paper, a real-time and in situ optical measuring system is reported to observe high-velocity deformations of samples subjected to impact loading. The system consists of a high-speed camera, a He-Ne laser, a frame grabber, a synchronization device and analysis software based on digital correlation theory. The optical system has been adapted to investigate the dynamic deformation field and its evolution in notched samples loaded by an split Hopkinson tension bar, with a resolution of 50 pin and an accuracy of 0.5 mum. Results obtained in experiments are discussed and compared with numerical simulations. It is shown that the measuring system is effective and valid.
Resumo:
The strain gradient effect becomes significant when the size of fracture process zone around a crack tip is comparable to the intrinsic material length l, typically of the order of microns. Using the new strain gradient deformation theory given by Chen and Wang, the asymptotic fields near a crack tip in an elastic-plastic material with strain gradient effects are investigated. It is established that the dominant strain field is irrotational. For mode I plane stress crack tip asymptotic field, the stress asymptotic field and the couple stress asymptotic field can not exist simultaneously. In the stress dominated asymptotic field, the angular distributions of stresses are consistent with the classical plane stress HRR field; In the couple stress dominated asymptotic field, the angular distributions of couple stresses are consistent with that obtained by Huang et al. For mode II plane stress and plane strain crack tip asymptotic fields, only the stress-dominated asymptotic fields exist. The couple stress asymptotic field is less singular than the stress asymptotic fields. The stress asymptotic fields are the same as mode II plane stress and plane strain HRR fields, respectively. The increase in stresses is not observed in strain gradient plasticity for mode I and mode II, because the present theory is based only on the rotational gradient of deformation and the crack tip asymptotic fields are irrotational and dominated by the stretching gradient.