4 resultados para Eigenvalue Analysis

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Instabilities of fluid flows have traditionally been investigated by normal mode analysis, i.e. by linearizing the equations of flow and testing for unstable eigenvalues of the linearized problem. However, the results of eigenvalue analysis agree poorly in many cases with experiments, especially for shear flows. In this paper we study the instabilities of two-dimensional Couette flow of a polymeric fluid in the framework of non-modal stability theory rather than normal mode analysis. A power-law model is used to describe the polymeric liquid. We focus on the response to external excitations and initial conditions by examining the pseudospectra structures and the transient energy growths. For both Newtonian and non-Newtonian flows, the results show that there can be a rather large transient growth even though the linear operator of Couette flow has no unstable eigenvalue. The effects of non-Newtonian viscosity on the transient behaviors are examined in this study. The results show that the "shear-thinning/shear-thickening" effect increases/decreases the amplitude of responses to external excitations and initial conditions. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nonmodal linear stability of a falling film over a porous inclined plane has been investigated. The base flow is driven by gravity. We use Darcy's law to describe the flow in the porous medium. A simplified one-sided model is used to describe the fluid flow. In this model, the influence of the porous layer on the flow in the film can be identified by a parameter beta. The instabilities of a falling film have traditionally been investigated by linearizing the governing equations and testing for unstable eigenvalues of the linearized problem. However, the results of eigenvalue analysis agree poorly in many cases with experiments, especially for shear flows. In the present paper, we have studied the linear stability of three-dimensional disturbances using the nonmodal stability theory. Particular attentions are paid to the transient behavior rather than the long time behavior of eigenmodes predicted by traditional normal mode analysis. The transient behaviors of the response to external excitations and the response to initial conditions are studied by examining the pseudospectral structures and the energy growth function G(t) Before we study the nonmodal stability of the system, we extend the results of long-wave analysis in previous works by examining the linear stabilities for streamwise and spanwise disturbances. Results show that the critical conditions of both the surface mode and the shear mode instabilities are dependent on beta for streamwise disturbances. However, the spanwise disturbances have no unstable eigenvalue. 2010 American Institute of Physics. [doi:10.1063/1.3455503]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Here we attempt to characterize protein evolution by residue features which dominate residue substitution in homologous proteins. Evolutionary information contained in residue substitution matrix is abstracted with the method of eigenvalue decomposition. Top eigenvectors in the eigenvalue spectrums are analyzed as function of the level of similarity, i.e. sequence identity (SI) between homologous proteins. It is found that hydrophobicity and volume are two significant residue features conserved in protein evolution. There is a transition point at SI approximate to 45%. Residue hydrophobicity is a feature governing residue substitution as SI >= 45%. Whereas below this SI level, residue volume is a dominant feature. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical modes of AlGaInP laser diodes with real refractive index guided self-aligned (RISA) structure were analyzed theoretically on the basis of two-dimension semivectorial finite-difference methods (SV-FDMs) and the computed simulation results were presented. The eigenvalue and eigenfunction of this two-dimension waveguide were obtained and the dependence of the confinement factor and beam divergence angles in the direction of parallel and perpendicular to the pn junction on the structure parameters such as the number of quantum wells, the Al composition of the cladding layers, the ridge width, the waveguide thickness and the residual thickness of the upper P-cladding layer were investigated. The results can provide optimized structure parameters and help us design and fabricate high performance AlGaInP laser diodes with a low beam aspect ratio required for optical storage applications.