142 resultados para ERROR PROPAGATION
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
从并联机构与串联机构的运动学等效 ,并联机构本身特征与并联机构实际工作空间出发 ,考虑各分支末端误差对最终运动平台末端误差的影响 ,提出了并联机构位姿误差放大因子分析法·依据位姿误差放大因子具有对误差定量分析的特点 ,该分析方法既可用于机构参数优化 ,又可用于结构精度设计· 最后 ,给出了一个实例说明本方法的有效性·
Resumo:
Based on the generalized Huygens-Fresnel diffraction integral theory and the stationary-phase method, we analyze the influence on diffraction-free beam patterns of an elliptical manufacture error in an axicon. The numerical simulation is compared with the beam patterns photographed by using a CCD camera. Theoretical simulation and experimental results indicate that the intensity of the central spot decreases with increasing elliptical manufacture defect and propagation distance. Meanwhile, the bright rings around the central spot are gradually split into four or more symmetrical bright spots. The experimental results fit the theoretical simulation very well. (C) 2008 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A new finite difference wide-angle beam propagation method is developed by introducing the least-squares expansion approximant in the propagator expansion. In this new method it is not necessary to select the reference index point because of the whole region approaching the lease-square expansion. This method avoids the problems induced by error selection of the reference index in the old methods based on Taylor or Pade expansion. Several typical structures are simulated by the new method and the results prove the validity of it.
Resumo:
Pressure wave refrigerators (PWR) refrigerate the gas through periodical expansion waves. Due to its simple structure and robustness, PWR may have many potential applications if the efficiency becomes competitive with existing alternative devices. In order to improve the efficiency, the characteristics of wave propagation in a PWR are studied by experiment, numerical simulation and theoretical analysis. Based on the experimental results and numerical simulation, a simplified model is suggested, which includes the assumptions of flux-equilibrium and conservation of the free energy. This allows the independent analysis of the operation parameters and design specifics. Furthermore, the optimum operation condition can be deduced. Some considerations to improve the PWR efficiency are also given.
Resumo:
针对氢/空气混合物,通过实验研究了其预混火焰在半开口管道中的火焰传播加速现象,结果表明,火焰传播状态随着氢气当量比的变化而发生改变。当氢/空气混合物被点燃后,由于障碍物的扰动,火焰在管道中不断加速传播,并最终到达一准稳态传播。在氢气当量比0.31附近时,火焰速度发生跃变。当氢气当量比足够大时,火焰传播由爆燃态转变为爆轰态。在本实验条件下,爆燃转准爆轰的临界条件是d/Lambda>=2.6(d是圆环形障碍物内径,人是爆轰格胞尺度)。障碍物阻塞比的变化对最大火焰速度和压力提升的影响不明显。
Resumo:
A comprehensive model of laser propagation in the atmosphere with a complete adaptive optics (AO) system for phase compensation is presented, and a corresponding computer program is compiled. A direct wave-front gradient control method is used to reconstruct the wave-front phase. With the long-exposure Strehl ratio as the evaluation parameter, a numerical simulation of an AO system in a stationary state with the atmospheric propagation of a laser beam was conducted. It was found that for certain conditions the phase screen that describes turbulence in the atmosphere might not be isotropic. Numerical experiments show that the computational results in imaging of lenses by means of the fast Fourier transform (FFT) method agree well with those computed by means of an integration method. However, the computer time required for the FFT method is 1 order of magnitude less than that of the integration method. Phase tailoring of the calculated phase is presented as a means to solve the problem that variance of the calculated residual phase does not correspond to the correction effectiveness of an AO system. It is found for the first time to our knowledge that for a constant delay time of an AO system, when the lateral wind speed exceeds a threshold, the compensation effectiveness of an AO system is better than that of complete phase conjugation. This finding indicates that the better compensation capability of an AO system does not mean better correction effectiveness. (C) 2000 Optical Society of America.
Resumo:
Numerous microcracks propagation in one metal matrix composite, Al/SiCp under impact loading was investigated. The test data was got with a specially designed impact experimental approach. The analysis to the density, nucleating locations and distributions of the microcracks as well as microstructure effects of the original composite was received particular emphasis. The types of microcracks or debonding nucleated in the tested composite were dependent on the stress level and its duration. Distributions of the microcracks were depended on that of microstructures of the tested composite while total number of microcracks in unit area and unit duration, was controlled by the stress levels. Also, why the velocity was much lower than theoretical estimations for elastic solids and why the microcracks propagating velocities increased with the stress levels' increasing in current experiments were analysed and explained.
Resumo:
The gradient elastic constitutive equation incorporating the second gradient of the strains is used to determine the monochromatic elastic plane wave propagation in a gradient infinite medium and thin rod. The equation of motion, together with the internal material length, has been derived. Various dispersion relations have been determined. We present explicit expressions for the relationship between various wave speeds, wavenumber and internal material length.
Resumo:
It is well known that noise and detection error can affect the performances of an adaptive optics (AO) system. Effects of noise and detection error on the phase compensation effectiveness in a dynamic AO system are investigated by means of a pure numerical simulation in this paper. A theoretical model for numerically simulating effects of noise and detection error in a static AO system and a corresponding computer program were presented in a previous article. A numerical simulation of effects of noise and detection error is combined with our previous numeral simulation of a dynamic AO system in this paper and a corresponding computer program has been compiled. Effects of detection error, readout noise and photon noise are included and investigated by a numerical simulation for finding the preferred working conditions and the best performances in a practical dynamic AO system. An approximate model is presented as well. Under many practical conditions such approximate model is a good alternative to the more accurate one. A simple algorithm which can be used for reducing the effect of noise is presented as well. When signal to noise ratio is very low, such method can be used to improve the performances of a dynamic AO system.
Resumo:
An investigation into the three-dimensional propagation of the transmitted shock wave in a square cross-section chamber was described in this paper, and the work was carried out numerically by solving the Euler equations with a dispersion-controlled scheme. Computational images were constructed from the density distribution of the transmitted shock wave discharging from the open end of the square shock tube and compared directly with holographic interferograms available for CFD validation. Two cases of the transmitted shock wave propagating at different Mach numbers in the same geometry were simulated. A special shock reflection system near the corner of the square cross-section chamber was observed, consisting of four shock waves: the transmitted shock wave, two reflection shock waves and a Mach stem. A contact surface may appear in the four-shock system when the transmitted shock wave becomes stronger. Both the secondary shock wave and the primary vortex loop are three-dimensional in the present case due to the non-uniform flow expansion behind the transmitted shock.
Distinct Element Analysis on Propagation Characteristics of P-Wave in Rock Pillar with Finite length
Resumo:
以节理岩体等效刚度的概念为基础,讨论了离散元刚性块体模型中节理刚度的选取问题。采用面-面接触模型模拟了纵波在一维岩体中的传播,给出了纵波波形;研究了阻尼比、软弱夹层以及节理间是否可拉对波传播规律的影响。
Resumo:
To investigate the low temperature fatigue crack propagation behavior of offshore structural steel A131 under random ice loading, three ice failure modes that are commonly present in the Bohai Gulf are simulated according to the vibration stress responses induced by real ice loading. The test data are processed by a universal software FCPUSL developed on the basis of the theory of fatigue crack propagation and statistics. The fundamental parameter controlling the fatigue crack propagation induced by random ice loading is determined to be the amplitude root mean square stress intensity factor K-arm. The test results are presented on the crack propagation diagram where the crack growth rate da/dN is described as the function of K-arm. It is evident that the ice failure modes have great influence on the fatigue crack propagation behavior of the steel in ice-induced vibration. However, some of the experimental phenomena and test results are hard to be physically explained at present. The work in this paper is an initial attempt to investigate the cause of collapse of offshore structures due to ice loading.
Resumo:
No abstract.