32 resultados para ENERGY RELAXATION
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The magnetophonon resonance effect in the energy relaxation rate is studied theoretically for a quasi-two-dimensional electron gas in a semiconductor quantum well. An electron-temperature model is adopted to describe the coupled electron-phonon system. The energy relaxation time, derived from the energy relaxation rate, is found to display an oscillatory behavior as the magnetic-field strength changes, and reaches minima when the optical phonon frequency equals integer multiples of the electron cyclotron frequency. The theoretical results are compared with a recent experiment, and a qualitative agreement is found.
Resumo:
The rising time of the excitonic luminescence in GaAs/AlGaAs quantum wells is studied as a function of the well width. For well thickness below approximately 20 Angstrom, we find an increase of rising time with decreasing well width. We explain the dependence of the rising time on well width in very thin quantum wells by the slow-down energy relaxation and/or exciton migration processes due to the decrease of the scattering rate of the exciton-acoustic-phonon interaction. (C) 1996 American Institute of Physics.
Resumo:
We investigate the temperature dependence of photoluminescence from single and ensemble InAs/GaAs quantum dots systematically. As temperature increases, the exciton emission peak for single quantum dot shows broadening and redshift. For ensemble quantum dots, however, the exciton emission peak shows narrowing and fast redshift. We use a simple steady-state rate equation model to simulate the experimental data of photoluminescence spectra. It is confirmed that carrier-phonon scattering gives the broadening of the exciton emission peak in single quantum dots while the effects of carrier thermal escape and retrapping play an important role in the narrowing and fast redshift of the exciton emission peak in ensemble quantum dots.
Resumo:
We investigate the dependence of the differential reflection on the structure parameters of quantum dot (QD) heterostructures in pump-probe reflection measurements by both numerical simulations based on the finite-difference time-domain technique and theoretical calculations based on the theory of dielectric films. It is revealed that the value and sign of the differential reflection strongly depend on the thickness of the cap layer and the QD layer. In addition, a comparison between the carrier dynamics in undoped and p-doped InAs/GaAs QDs is carried out by pump-probe reflection measurements. The carrier capture time from the GaAs barrier into the InAs wetting layer and that from the InAs wetting layer into the InAs QDs are extracted by appropriately fitting differential reflection spectra. Moreover, the dependence of the carrier dynamics on the injected carrier density is identified. A detailed analysis of the carrier dynamics in the undoped and p-doped QDs based on the differential reflection spectra is presented, and its difference with that derived from the time-resolved photoluminescence is discussed. (C) 2008 American Institute of Physics.
Resumo:
The temperature-dependent photoluminescence (PL) properties of InAs/GaAs self-organized quantum dots (QDs) have been investigated at high excitation power. The fast redshift of the ground-state and the first excited-state PL energy with increasing temperature was observed. The temperature-dependent linewidth of the QD ground state with high carrier density is different from that with low carrier density. Furthermore, we observed an increasing PL intensity of the first excited state of QDs with respect to that of the ground state and demonstrate a local equilibrium distribution of carriers between the ground state and the first excited state for the QD ensemble at high temperature (T > 80 K). These results provide evidence for the slowdown of carrier relaxation from the first excited state to the ground state in InAs/GaAs quantum dots.
Resumo:
Using a newly-developed population mixing technique we have studied the exciton dynamics in self-organized InAs/GaAs quantum dots (QDs). It is found that the exciton lifetime in self-organized InAs/GaAs QDs is around 1 ns, almost independent of InAs layer thickness. The temperature dependence of the exciton lifetime varies from sample to sample, but no obvious experimental evidence was found that the lifetime is related to the delta-function of density of states in QDs. We have also found that the population mixing technique can be used to directly reveal the band-filling effect in the excited states of the QDs.
Resumo:
Intrawell and interwell transfers of excitons are observed by a temperature-dependent continuous-wave photoluminescence study of growth-interrupted single quantum wells. The intrawell transfer among the interface localization areas suggests a thermodynamic equilibrium between energy relaxation via LO-phonon emission and thermal population via phonon absorption. Thermal population is dominant in wider wells while relaxation is clearly observable in a four-monolayer narrow well at low temperatures. Interwell transfer of excitons also occurs between two narrow wells. (C) 1998 Academic Press.
Resumo:
用分子动力学方法结合Dlott等人提出的"门槛模"理论研究集体相互作用下硝基甲烷振动能量弛豫过程.其中振动冷却过程与实验符合的很好.在振动激发过程的分子动力学模拟中观测到与实验一致的基频频移现象.用分子动力学方法从微观上详细地描述出分子"门槛模"振动激发过程.研究表明,在高温高压作用下,集体作用效应对多原子振动激发具有不可忽视的作用,能量传递过程中除了基频的作用外,强烈的非线性相互作用引起的振动模泛频也携带有大量的振动能,这些泛频也对分子振动能量传递产生重要影响.
Resumo:
Subband separation energy dependence of intersubband relaxation time in a wide quantum well (250 Angstrom) was studied by steady-state and time-resolved photoluminescence. By applying a perpendicular electrical field, the subband separation energy in the quantum well is continuously tuned from 21 to 40 meV. As a result, it is found that the intersubband relaxation time undergoes a drastic change from several hundred picoseconds to subpicoseconds. It is also found that the intersubband relaxation has already become very fast before the energy separation really reaches one optical phonon energy. (C) 1997 American Institute of Physics.
Resumo:
Ce3+ and B2O3 are introduced into erbium-doped Bi2O3-SiO2 glass to enhance the luminescence emission and optic spectra characters of Er3+. The energy transfer from Er3+ to Ce3+ will obviously be improved with the phonon energy increasing by the addition of B2O3. Here, the nonradiative rate, the lifetime of the I-4(11/2) -> I-4(3/2) transition, and the emission intensity and bandwidth of the 1.5 mu m luminescence with the I-4(13/2) -> I-4(5/2) transition of Er3+ are discussed in detail. The results show that the optical parameters of Er3+ in this bismuth-borate-silicate glass are nearly as good as that in tellurite glass, and the physical properties are similar to those in silicate glass. With the Judd-Ofelt and nonradiative theory analyses, the multiphonon decay and phonon-assisted energy-transfer (PAT) rates are calculated for the Er3+/Ce3+ codoped glasses. For the PAT process, an optimum value of the glass phonon energy is obtained after B2O3 is introduced into the Er3+/Ce3+ codoped bismuth-silicate glasses, and it much improves the energy-transfer rate between Er3+ I-4(11/2)-I-4(13/2) and Ce3+ F-2(5/2) -> F-2(7/2), although there is an energy mismatch. (c) 2007 Optical Society of America.
Resumo:
Mitochondria are essential for cellular energy production in most eukaryotic organisms. However, when glucose is abundant, yeast species that underwent whole-genome duplication (WGD) mostly conduct fermentation even under aerobic conditions, and most can
Resumo:
We report that, by linearly polarized pumping of different wavelengths, Kerr transients appear at zero magnetic field only in the case when GaMnAs samples are initialized at 3 K by first applying a 0.8 Tesla field and then returning to zero field. We find that, instead of magnetization precession, the near-band gap excitation induces a coherent out-of-plane turning of magnetization, which shows very long relaxation dynamics with no precession. When photon energy increases, the peak value of the Kerr transient increases, but it decays rapidly to the original slow transient seen under the near-band-gap excitation.
Resumo:
In this paper, the excitation energy density dependence of carrier spin relaxation is studied at room temperature for the as-grown and annealed (Ga, Mn) As samples using femtosecond time-resolved pump-probe Kerr spectroscopy. It is found that spin relaxation lifetime of electrons lengthens with increasing excitation energy density for both samples, and the annealed ( Ga, Mn) As has shorter carrier recombination and electron spin relaxation lifetimes as well as larger Kerr rotation angle than the as-grown ( Ga. Mn) As under the same excitation condition. which shows that DP mechanism is dominant in the spin relaxation process for ( Ga, Mn)As at room temperature. The enhanced ultrafast Kerr effect in the annealed (Ga,Mn)As shows the potential application of the annealed ( Ga, Mn) As in ultrafast all-optical spin switches, and also provides a further evidence for the p-d exchange mechanism of the ferromagnetic origin of (Ga, Mn) As.