59 resultados para ENERGY RANGE
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Determination of the energy range is an important precondition of focus calibration using alignment procedure (FOCAL) test. A new method to determine the energy range of FOCAL off-lined is presented in this paper. Independent of the lithographic tool, the method is time-saving and effective. The influences of some process factors, e.g. resist thickness, post exposure bake (PEB) temperature, PEB time and development time, on the energy range of FOCAL are analyzed.
Resumo:
Direct ion beam deposition of carbon films on silicon in the ion energy range of 15-500 eV and temperature range of 25-800-degrees-C has been studied. The work was carried out using mass-separated C+ and CH3+ ions under ultrahigh vacuum. The films were characterized with x-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy, and transmission electron diffraction analysis. In the initial stage of the deposition, carbon implanted into silicon induced the formation of silicon carbide, even at room temperature. Further carbon ion bombardment then led to the formation of a carbon film. The film properties were sensitive to the deposition temperature but not to the ion energy. Films deposited at room temperature consisted mainly of amorphous carbon. Deposition at a higher temperature, or post-deposition annealing, led to the formation of microcrystalline graphite. A deposition temperature above 800-degrees-C favored the formation of microcrystalline graphite with a preferred orientation in the (0001) direction. No evidence of diamond formation in these films was observed.
Resumo:
A direct ion beam deposition system designed for heteroepitaxy at a low substrate temperature and for the growth of metastable compounds has been constructed and tested. The system consists of two mass-resolved low-energy ion beams which merge at the target with an incident energy range 50-25 000 eV. Each ion beam uses a Freeman ion source for ion production and a magnetic sector for mass filtering. While a magnetic quadrupole lens is used in one beam for ion optics, an electrostatic quadrupole lens focuses the other beam. Both focusing approaches provide a current density more than 100-mu-A/cm2, although the magnetic quadrupole gives a better performance for ion energies below 200 eV. The typical current of each beam reaches more than 0.3 mA at 100 eV, with a ribbon beam of about 0.3-0.5 x 2 cm2. The target is housed in an ultrahigh vacuum chamber with a base pressure of 1 x 10(-7) Pa and a typical pressure of 5 x 10(-6) Pa when a noncondensable beam like argon is brought into the chamber. During deposition, the target can be heated to 800-degrees-C and scanned mechanically with an electronic scanning control unit. The dual beam system has been used to grow GaN using a Ga+ and a N+ beam, and to study the oxygen and hydrogen ion beam bombardment effects during carbon ion beam deposition. The results showed that the simultaneous arrival of two beams at the target is particularly useful in compound formation and in elucidation of growth mechanisms.
Resumo:
L-shell X-ray spectra of Mo surface induced by Xe25+ and Xe29+ were measured. The X-ray intensity was obtained in the kinetic energy range of the incident ions from 350 to 600 keV. The relationship of X-ray intensity with kinetic energy of the projectile and its charge state were studied, and the simple explanation was given.
Resumo:
Based on the isospin- and momentum-dependent transport model IBUU04, we calculated the reaction of the Sn-132+Sn-124 systems in semi-central collisions at beam energies of 400/A MeV, 600/A MeV and 800/A MeV by adopting two different density dependent symmetry energies. It was found that the proton differential elliptic flow as a function of transverse momentum is quite sensitive to the density dependence of symmetry energy, especially for the considered beam energy range. Therefore the proton differential elliptic flow may be considered as a robust probe for investigating the high density behavior of symmetry energy in intermediate energy heavy ion collisions.
Resumo:
Al K-shell X-ray yields are measured with highly charged Arq+ ions (q = 12-16) bombarding against aluminium. The energy range of the Ar ions is from 180 to 380 keV. K-shell ionization cross sections of aluminium are also obtained from the yields data. The experimental data is explained within the framework of 2p pi-2p sigma s rotational coupling. When Ar ions with 2p-shell vacancies are incident on aluminium, the vacancies begin to reduce. Meanwhile, collisions against Al atoms lead to the production of new 2p-shell vacancies of Ar ions. These Ar 2p-shell vacancies will transfer to the 1s orbit of an Al atom via 2p pi-2p sigma s rotational coupling leading to the emission of a K-shell X-ray of aluminiun. A model is constructed based on the base of the above physical scenario. The calculation results of the model are in agreement with the experimental results.
Resumo:
Gadolinium oxide thin films have been prepared on silicon (100) substrates with a low-energy dual ion-beam epitaxial technique. Substrate temperature was an important factor to affect the crystal structures and textures in an ion energy range of 100-500 eV. The films had a monoclinic Gd2O3 structure with preferred orientation ((4) over bar 02) at low substrate temperatures. When the substrate temperature was increased, the orientation turned to (202), and finally, the cubic structure appeared at the substrate temperature of 700 degreesC, which disagreed with the previous report because of the ion energy. The AES studies found that Gadolinium oxide shared Gd2O3 structures, although there were a lot of oxygen deficiencies in the films, and the XPS results confirmed this. AFM was also used to investigate the surface images of the samples. Finally, the electrical properties were presented. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this work, the results of numerical simulations of X-ray fluorescence holograms and the reconstructed atomic images for Fe single crystal are given. The influences of the recording angles ranges and the polarization effect on the reconstruction of the atomic images are discussed. The process for removing twin images by multiple energy fluorescence holography and expanding the energy range of the incident X-rays to improve the resolution of the reconstructed images is presented. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The results of conductivity, photoconductivity and constant photocurrent method absorption measurements by DC and AC methods in hydrogenated silicon films with mixed amorphous-nanocrystalline structure are presented. A series of diphasic silicon films was deposited by very high frequency plasma enhanced chemical vapor deposition technique, using different hydrogen dilution ratios of silane. The increase of hydrogen dilution ratio results in five orders of magnitude increase of conductivity and a sharp increase of grain volume fraction. The comparison of the absorption spectra obtained by DC and AC methods showed that they are similar for silicon films with the predominantly amorphous structure and films with high grain volume fraction. However we found a dramatic discrepancy between the absorption spectra obtained by DC and AC constant photocurrent methods in silicon films deposited in the regime of the structure transition from amorphous to nanocrystalline state. AC constant photocurrent method gives higher absorption coefficient than DC constant photocurrent method in the photon energy range of 1.2-1.7 eV. This result indicates the possibility of crystalline grains contribution to absorption spectra measured by AC constant photocurrent method in silicon films with intermediate crystalline grain volume fraction. (c) 2008 Published by Elsevier B.V.
Resumo:
Gadolinium oxide thin films have been prepared on silicon (100) substrates with a low-energy dual ion-beam epitaxial technique. Substrate temperature was an important factor to affect the crystal structures and textures in an ion energy range of 100-500 eV. The films had a monoclinic Gd2O3 structure with preferred orientation ((4) over bar 02) at low substrate temperatures. When the substrate temperature was increased, the orientation turned to (202), and finally, the cubic structure appeared at the substrate temperature of 700 degreesC, which disagreed with the previous report because of the ion energy. The AES studies found that Gadolinium oxide shared Gd2O3 structures, although there were a lot of oxygen deficiencies in the films, and the XPS results confirmed this. AFM was also used to investigate the surface images of the samples. Finally, the electrical properties were presented. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
GaAsSb/GaAs single quantum wells (SQWs) grown by molecular beam epitaxy are studied by selectively-excited photoluminescence (SEPL) measurement. For the first time, we have simultaneously observed the PL, from both type I and type II transitions in GaAsSb/GaAs heterostructure in the SEPL. The two transitions exhibit different PL, behaviours under different excitation energy. As expected, the peak energy of type I emission remains constant in the whole excitation energy range we used, while type U transition shows a significant blue shift with increasing excitation energy. The observed blue shift is well explained in terms of electron-hole charge separation model at the interface. Time-resolved(TR) PL exhibits more type 11 characteristic of GaAsSb/GaAs QW. Moreover, the results of the excitation-power-dependent PL and TRPL provide more direct information on the type-II nature of the band alignment in GaAsSb/GaAs quantum-well structures. By combining the experimental results with some simple calculations, we have obtained the strained and unstrained valence band offsets of Q(v) = 1.145 and Q(v)(0) = 0. 76 in our samples, respectively.
Resumo:
GaAsSb/GaAs single quantum wells grown by molecular-beam epitaxy are studied by selectively excited photoluminescence measurements. We have simultaneously observed the photoluminescence (PL) from both type-I and type-II transitions in the samples. The two transitions exhibit different PL behavior under different excitation energies. As expected, the peak energy of the type-I emission remains constant in the entire excitation energy range we used, while the type-II transition shows a significant blueshift with increasing excitation energy. The observed blueshift can be well explained by an electron-hole charge separation model at interface. This result, along with the excitation-power-dependent PL and the measured longer carrier decay time, provides more direct information on the type-II nature of the band alignment in GaAsSb/GaAs quantum well structures. (C) 2002 American Institute of Physics.
Interference effects in differential reflectance spectra of the GaAs epilayers grown on Si substrate
Resumo:
We report the observation of oscillating features in differential reflectance spectra from the GaAs epilayer grown on Si substrate in the energy range both below and above the fundamental band gap. It is demonstrated that the oscillating features are due to the difference in the interference between two neighboring areas of the sample. The interference arises from two light beams reflected from different interfaces of the sample. The calculated spectra in the nonabsorption region are in good agreement with measured data. It is shown that the interference effect can be used as a sensitive method to characterize the inhomogeneity of the semiconductor heterostructures. (C) 1998 American Institute of Physics. [S0021-8979(98)08723-4].
Resumo:
We present lateral intersubband photocurrent (PC) study on self-assembled InAs/InAIAs/InP(001) nanostructures in normal incidence. With the help of interband excitation, a broad PC signal has been observed in the photon energy range of 150-630 meV arising from the bound-to-continuum intersubband absorption in the InAs nanostructures. The large linewidth of the intersubband PC signal is due to the size inhomogeneity of the nanostructures. With the increase of the interband excitation the intersubband PC signal firstly increases with a redshift of PC peak and reaches its maximum, then decreases with no peak shift. The increase and redshift of the PC signal at low excitation level can be explained by the state filling effect. However, the decrease of PC signal at high excitation level may be due to the change of the mobility and lifetime of the electrons. The intersubband PC signal decreases when the temperature is increased, which can be explained by the decrease of the mobility and lifetime of the electrons and the thermal escape of electrons.
Resumo:
In2O3 films grown by helicon magnetron sputtering with different thicknesses were characterized by spectroscopic ellipsometry in the energy range from 1.5 to 5.0 eV. Aside from one amorphous sample prepared at room substrate temperature, polycrystalline In2O3 films with cubic crystal structure were confirmed for other four samples prepared at the substrate temperature of 450 A degrees C. Excellent SE fittings were realized by applying 1 and/or 2 terms F&B amorphous formulations, building double layered film configuration models, and further taking account of void into the surface layer based on Bruggeman effective medium approximation for thinner films. Spectral dependent refractive indices and extinction coefficients were obtained for five samples. The curve shapes were well interpreted according to the applied dispersion formulas. Almost similar optical band gap values from 3.76 to 3.84 eV were obtained for five samples by Tauc plot calculation using extinction coefficients under the assumption of direct allowed optical transition mode.