22 resultados para Double Complex
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
This is the first part of direct numerical simulation (DNS) of double-diffusive convection in a slim rectangular enclosure with horizontal temperature and concentration gradients. We consider the case with the thermal Rayleigh number of 10^5, the Pradtle number of 1, the Lewis number of 2, the buoyancy ratio of composition to temperature being in the range of [0,1], and height-to-width aspect ration of 4. A new 7th order upwind compact scheme was developed for approximation of convective terms, and a three-stage third-order Runge-Kutta method was employed for time advancement. Our DNS suggests that with the buoyancy ratio increasing form 0 to 1, the flow of transition is a complex series changing fromthe steady to periodic, chaotic, periodic, quasi-periodic, and finally back to periodic. There are two types of periodic flow, one is simple periodic flow with single fundamental frequency (FF), and another is complex periodic flow with multiple FFs. This process is illustrated by using time-velocity histories, Fourier frequency spectrum analysis and the phase-space rajectories.
Resumo:
DNA double-strand breaks (DSBs) are the most deleterious lesion inflicted by ionizing radiation. Although DSBs are potentially carcinogenic, it is not clear whether complex DSBs that are refractory to repair are more potently tumorigenic compared with simple breaks that can be rapidly repaired, correctly or incorrectly, by mammalian cells. We previously demonstrated that complex DSBs induced by high-linear energy transfer (LET) Fe ions are repaired slowly and incompletely, whereas those induced by low-LET gamma rays are repaired efficiently by mammalian cells. To determine whether Fe-induced DSBs are more potently tumorigenic than gamma ray-induced breaks, we irradiated 'sensitized' murine astrocytes that were deficient in Ink4a and Arf tumor suppressors and injected the surviving cells subcutaneously into nude mice. Using this model system, we find that Fe ions are potently tumorigenic, generating tumors with significantly higher frequency and shorter latency compared with tumors generated by gamma rays. Tumor formation by Fe-irradiated cells is accompanied by rampant genomic instability and multiple genomic changes, the most interesting of which is loss of the p15/Ink4b tumor suppressor due to deletion of a chromosomal region harboring the CDKN2A and CDKN2B loci. The additional loss of p15/Ink4b in tumors derived from cells that are already deficient in p16/Ink4a bolsters the hypothesis that p15 plays an important role in tumor suppression, especially in the absence of p16. Indeed, we find that reexpression of p15 in tumor-derived cells significantly attenuates the tumorigenic potential of these cells, indicating that p15 loss may be a critical event in tumorigenesis triggered by complex DSBs.
Resumo:
The behaviors of double proton transfer (DPT) occurring in a representative glycinamide-formamidine complex have been investigated employing the B3LYP/6-311++G** level of theory. Computational results suggest that the participation of a formamidine molecule favors the proceeding of the proton transfer (PT) for glycinamide compared with that without mediator-assisted case. The DPT process proceeds with a concerted mechanism rather than a stepwise one since no zwitterionic complexes have been located during the DPT process. The barrier heights are 14.4 and 3.9 kcal/mol for the forward and reverse directions, respectively. However, both of them have been reduced by 3.1 and 2.9 kcal/mol to 11.3 and 1.0 kcal/mol with further inclusion of zero-point vibrational energy (ZPVE) corrections, where the lower reverse barrier height implies that the reverse reaction should proceed easily at any temperature of biological importance. Additionally, the one-electron oxidation process for the double H-bonded glycinamide-formamidine complex has also been investigated. The oxidated product is characterized by a distonic radical cation due to the fact that one-electron oxidation takes place on glycinamide fragment and a proton has been transferred from glycinamide to formamidine fragment spontaneously. As a result, the vertical and adiabatic ionization potentials for the neutral double H-bonded complex have been determined to be about 8.46 and 7.73 eV, respectively, where both of them have been reduced by about 0.79 and 0.87 eV relative to those of isolated glycinamide due to the formation of the intermolecular H-bond with formamidine. Finally, the differences between model system and adenine-thymine base pair have been discussed briefly.
Resumo:
An asymmetrical double Schiff-base Cu(II) mononuclear complex, HCuLp (H(3)Lp is N-3-carboxylsalicylidene-N'-5-chlorosalicylaldehyde-1,3-diaminopropane) and a heterometal trinuclear complex with double molecular structure (CuLp)(2)Co center dot 5H(2)O have been synthesized and characterized by means of elemental analyses, IR and electronic spectra. The crystal structure of the heterotrinucler complex was determined by X-ray analysis. Each asymmetric unit within the unit cell of the complex contains two heterotrinuclear neutral molecules (a) [CuLpCoCuLp], (b) [(CuLpH(2)O) CoCuLp] and four uncoordinated water molecules. In the two neutral molecules, the central Co2+ ions are located at the site of O-6 with a distorted octahedral geometry, one terminal Cu2+ ion (Cu(3)) at the square-pyramidal environment of N2O3, and the other three at the square planar coordination geometry with N2O2 donor atoms. Magnetic properties of the heterotrinucler complex have been determined in the temperature range 5-300 K, indicating that the interaction between the central Co2+ ion and the outer Co2+ ions is antiferromagnetic.
Resumo:
A novel polymeric Pr(III) complex with a new double betaine, namely [{Pr(L-1)(1.5)(H2O)(2)}(n)] [ClOli4]3(n). nH(2)O (1) (L-1= 1,4-diazoniobicyclo[2,2,2]octane- 1,4-dipropionate), has been synthesized and characterized by X-ray analysis. In the title complex, the Pr(III) atom is nine-coordinated by seven oxygen atoms from five L-1 ligands and two aqua ligands. Each pair of adjacent praseodymium(III) atoms is linked by a pair of mu(3) chelating and bridging carboxylate groups, thus forming an infinite metal metal chain running parallel to the a direction, and such chains are cross-linked by flexible backbones of L-1 ligands into a three-dimensional network with the perchlorate anions and lattice water molecules accommodated in the interstitial space. The title complex crystallizes in the monoclinic space group P2(1)/n with a = 8.085(2), b = 14.316(3), c = 29.775(6) Angstrom, beta = 103.04(3)degrees and Z = 4.
Resumo:
An experimental investigation of Bénard-Marangoni convection has been performed in double immiscible liquid layers of rectangular configuration on the ground. The two kinds of liquid are 10cst silicon oil and FC-70 respectively. The size of rectangular chamber is 100mm×40mm in horizontal cross-section. The evolution processes of convection are observed in the differential thickness ratio of two liquid layers. The critical temperature difference was measured via the detections of fluid convection by a particle image velocimetry (PIV) in the vertical cross-section of the liquid layer. The critical temperature difference or the critical Marangoni number was given. And the influence of the thickness ratio of two liquid layers on the convection instability was discussed. The evolution processes of patterns and temperature distributions on the interface are displayed by using thermal liquid crystal. The velocity distributions on the interface were also obtained. In comparison with the thermocapillary effect, the effect of buoyancy convection will relatively increase when the depth of the liquid layer increases. Because of the coupling of buoyancy and thermocapillary effect, the convection instability is much more complex than that in the microgravity environment. And the critical convection depends on the change of the thickness of liquid layers and also the change of thickness ratio of two liquid layers.
Resumo:
Multi-track laser cladding is now applied commercially in a range of industries such as automotive, mining and aerospace due to its diversified potential for material processing. The knowledge of temperature, velocity and composition distribution history is essential for a better understanding of the process and subsequent microstructure evolution and properties. Numerical simulation not only helps to understand the complex physical phenomena and underlying principles involved in this process, but it can also be used in the process prediction and system control. The double-track coaxial laser cladding with H13 tool steel powder injection is simulated using a comprehensive three-dimensional model, based on the mass, momentum, energy conservation and solute transport equation. Some important physical phenomena, such as heat transfer, phase changes, mass addition and fluid flow, are taken into account in the calculation. The physical properties for a mixture of solid and liquid phase are defined by treating it as a continuum media. The velocity of the laser beam during the transition between two tracks is considered. The evolution of temperature and composition of different monitoring locations is simulated.
Resumo:
We investigate the optical transmission properties of a combined system which consists of two quantum-dot-nanocavity subsystems indirectly coupled to a waveguide in a planar photonic crystal. A Mollow-like triplet and the growth of sidebands are found, reflecting intrinsic optical responses in the complex microstructure.
Resumo:
The single ionization of an He atom by intense linearly polarized laser field in the tunneling regime is studied by S- matrix theory. When only the first term of the expansion of the S matrix is considered and time, spatial distribution, and fluctuation of the laser pulse are taken into account, the obtained momentum distribution in the polarization direction of laser field is consistent with the semiclassical calculation, which only considers tunneling and the interaction between the free electron and external field. When the second term, which includes the interaction between the core and the free electron, is considered, the momentum distribution shows a complex multipeak structure with the central minimum and the positions of some peaks are independent of the intensity in some intensity regime, which is consistent with the recent experimental result. Based on our analysis, we found that the structures observed in the momentum distribution of an He atom are attributed to the " soft" collision of the tunneled electron with the core.
Resumo:
Electron transport through two parallel quantum dots is a kind of solid-state realization of double path interference We demonstrate that the inter-clot Coulomb correlation and quantum coherence would result in strong current fluctuations with a divergent Fano factor at zero frequency. We also provide physical interpretation for this surprising result, which displays its generic feature and allows us to recover this phenomenon in more complicated systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Well-defined complex quantum ring structures formed by droplet epitaxy are demonstrated. By varying the temperature of the crystallizing Ga droplets and changing the As flux, GaAs/AlGaAs quantum single rings and concentric quantum double rings are fabricated, and double-ring complexes are observed. The growth mechanism of these quantum ring complexes is addressed. (c) 2006 American Institute of Physics.
Resumo:
A novel metal-organic framework with unprecedented interweaving of coaxial single-helical and equal double-helical chains of opposite chirality, which features a super-connective helix simultaneously tangling with eight helices, was reported.
Resumo:
A lutetium bis( alkyl) complex stabilized by a flexible amino phosphine ligand LLu( CH2Si(CH3)(3))(2)(THF) (L = (2,6-C6H3( CH3)(2)) NCH( C6H5) CH2P(C6H5)(2)) was prepared which upon insertion of N, N'-diisopropylcarbodiimide led to C-H activation via metalation of the ligand aryl methyl followed by reduction of the C=N double bond.
Resumo:
The electrooxidation of bilirubin (BR) and bovine serum albumin (BSA) complexes was studied by in situ circular dichroism (CD) spectroelectrochemistry. The result showed that the mechanism of the whole electrooxidation process of this complex corresponded to electrochemical processes (EE mechanism) in aqueous solution. Some parameters of the process were obtained by double logarithm method, differential method and nonlinear regression method. In visible region, CD spectra of the two enantiomeric components of the complex and their fraction distribution against applied potentials were obtained by singular value decomposition least-square (SVDLS) method. Meanwhile, the distribution of the five components of secondary structure was also obtained by the same method in far-UV region. The peak potential gotten from EE mechanism corresponds to a turning point for the component transition, beyond which the whole reaction reaches a new equilibrium. Under applied positive potentials, the enantiomeric equilibrium between M and P form is broken and M form transfers to its enantiomer of P, while the fraction of alpha-helix increases and that improves the transition to P form.