19 resultados para Documentary photography

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experimental and theoretical studies are reported in this paper for the head-on collisions of a liquid droplet with another of the same fluid resting on a solid substrate. The droplet on the hydrophobic polydimethylsiloxane (PDMS) substrate remains in a shape of an approximately spherical segment and is isometric to an incoming droplet. The colliding process of the binary droplets was recorded with high-speed photography. Head-on collisions saw four different types of response in our experiments: complete rebound, coalescence, partial rebound With conglutination, and coalescence accompanied by conglutination. For a complete rebound, both droplets exhibited remarkable elasticity and the contact time of the two colliding droplets was found to be in the range of 10-20 ms. With both droplets approximately considered as elastic bodies, Hertz contact theory was introduced to estimate the contact time for the complete rebound case. The estimated result Was found to be on the same order of magnitude as the experimental data, which indicates that the present model is reasonable. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

are obtained by using implicit four-point and six-point schemes. The results from

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fluid mechanics of water entry is studied through investigating the underwater acoustics and the supercavitation. Underwater acoustic signals in water entry are extensively measured at about 30 different positions by using a PVDF needle hydrophone. From the measurements we obtain (1) the primary shock wave caused by the impact of the blunt body on free surface; (2) the vapor pressure inside the cavity; (3) the secondary shock wave caused by pulling away of the cavity from free surface; and so on. The supercavitation induced by the blunt body is observed by using a digital high-speed video camera as well as the single shot photography. The periodic and 3 dimensional motion of the supercavitation is revealed. The experiment is carried out at room temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Boltzmann equation of the sand particle velocity distribution function in wind-blown sand two-phase flow is established based on the motion equation of single particle in air. And then, the generalized balance law of particle property in single phase granular flow is extended to gas-particle two-phase flow. The velocity distribution function of particle phase is expanded into an infinite series by means of Grad's method and the Gauss distribution is used to replace Maxwell distribution. In the case of truncation at the third-order terms, a closed third-order moment dynamical equation system is constructed. The theory is further simplified according to the measurement results obtained by stroboscopic photography in wind tunnel tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigation of kerosene combustion in a Mach 2.5 flow was carried out using a model supersonic combustor with cross-section area of 51 mm × 70 mm and different integrated fuel injector/flameholder cavity modules. Experiments with pure liquid atomization and with effervescent atomization were characterized and compared. Direct photography, Schlieren imaging, and planar laser induced fluorescence (PLIF) imaging of OH radical were utilized to examine the cavity characteristics and spray structure. Schlieren images illustrate the effectiveness of gas barbotage in facilitating atomization and the importance of secondary atomization when kerosene sprays interacting with a supersonic crossflow. OH PLIF images further substantiate our previous finding that there exists a local high-temperature radical pool within the cavity flameholder, and this radical pool plays a crucial role in promoting kerosene combustion in a supersonic combustor. Under the same operation conditions, comparison of the measured static pressure distributions along the combustor also shows that effervescent atomization generally leads to better combustion performance than the use of pure liquid atomization. Furthermore, the present results demonstrate that the cavity characteristics can be different in non-reacting and reacting supersonic flows. As such, the conventional definition of cavity characteristics based on non-reacting flows needs to be revised.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of a small high-speed liquid jet apparatus is described. Water jets with velocities from 200 to 700 m/s were obtained by firing a deformable lead slug from an air rifle into a stainless steel nozzle containing water sealed with a rubber diaphragm. Nozzle devices using the impact extrusion (IE) and cumulation (CU) methods were designed to generate the jets. The effect of the nozzle diameter and the downstream distance on the jet velocity is examined. The injection sequences are visualized using both shadowgraphy and schlieren photography. The difference between the IE and CU methods of jet generation is found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When a shock wave interacts with a group of solid spheres, non-linear aerodynamic behaviors come into effect. The complicated wave reflections such as the Mach reflection occur in. the wave propagation process. The wave interactions with vortices behind each sphere's wake cause fluctuation in the pressure profiles of shock waves. This paper reports an experimental study for the aerodynamic processes involved in the interaction between shock waves and solid spheres. A schlieren photography was applied to visualize the various shock waves passing through solid spheres. Pressure measurements were performed along different downstream positions. The experiments were conducted in both rectangular and circular shock tubes. The data with respect to the effect of the sphere array, size, interval distance, incident Mach number, etc., on the shock wave attenuation were obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact behaviour of a range of glass and ceramic materials has been studied using high-speed photography. A gas gun was used to project hardened spheres at plate specimens in the velocity range 30 to 1000m s-1. The target materials included soda-lime glass, boron carbide and various glass ceramics and aluminas. The performance of a particular ceramic was found to depend on a combination of parameters but of key importance was the relative hardness of the projectile and target materials. The fracture toughness, K(IC), had only a secondary effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Following the quantitative determination of dust cloud parameters, this study investigates the flame propagation through cornstarch dust clouds in a vertical duct of 780 mm height and 160 x 160 mm square cross section, and gives particular attention to the effect of small scale turbulence and small turbulence intensity on flame characteristics. Dust suspensions in air were produced using an improved apparatus ensuring more uniform distribution and repeatable dust concentrations in the testing duct. The dispersion-induced turbulence was measured by means of a particle image velocimetry (PIV) system, and dust concentrations were estimated by direct weighing method. This quantitative assessment made it possible to correlate observed flame behaviors with the parameters of the dust cloud. Upward propagating dust flames, from both closed/open bottom end to open/closed top end of the duct, were visualized by direct light and shadow photography. From the observation of propagation regimes and the measurements of flame velocity, a critical value of the turbulence intensity can be specified below which laminar flame propagation would be established. This transition condition was determined to be 10 cm/s. Laminar flames propagated with oscillations from the closed bottom end to the open top end of the testing duct, while the turbulent flames accelerated continuously. Both laminar and turbulent flames propagated with steady velocity from the open bottom end to the closed top end of the duct. The measured propagation velocity of laminar flames appeared to be in the range of 0.45-0.56 m/s, and it was consistent with the measurements reported in the literature. In the present experimental study, the influence of dust concentration on flame propagation was also examined, and the flame propagation velocity was found weakly sensitive to the variations in dust concentration. Some information on the flame structure was revealed from the shadow records, showing the typical heterogeneous feature of the dust combustion process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper will introduce an atomization experiment of pulsed supersonic water jets and polymer polyacrylamide (PAA) (0.1% and 1.0% weight density) solution jets. The jets are generated from a small high-speed liquid jet apparatus. The schlieren photography is applied to visualize the jets. The velocities of the jets are measured by cutting two laser beams. The effects of the nozzle diameter and the standoff distance on atomization and the jet velocity have been examined. The experiment shows that the polymer solution jets are easier to be atomized than water jets. This may be due to low surface tension of the polymer solution. The nozzle diameter causes different shock structures around the supersonic jets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigation of kerosene combustion in a Mach 2.5 flow was carried out using a model supersonic combustor with cross-section area of 51 mm?70 mm, with special emphases on the characterization of effervescent atomization and the flameholdering mechanism using different integrated fuel injector/flameholder cavity modules. Direct photography, Schlieren imaging, and Planar Laser Induced Fluorescence (PLIF) imaging of OH were utilized to examine the cavity characteristics and spray structure, with and without gas barbotage. Schlieren images illustrate the effectiveness of gas barbotage in facilitating atomization and the importance of secondary atomization when kerosene sprays interacting with a supersonic crossflow. OH-PLIF images further substantiate our previous finding that there exists a local high temperature radical pool within the cavity flameholder and this radical pool plays a crucial role in promoting kerosene combustion in a supersonic combustor. The present results also demonstrate that the cavity characteristics can be different in non-reacting and reacting supersonic flows. As such, the conventional definition of cavity characteristics based on non-reacting flows needs to be revised.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of a small high-speed liquid jet apparatus is described. Water jets of 200m/s to 700m/s have been obtained by firing a deformable lead slug from an air rifle into a stainless steel nozzle containing water sealed with a rubber diaphragm. Nozzle devices of using the impact extrusion (IE) method and cumulation (CU) method are designed to generate jets. The injection sequences are visualized using schlieren photography. The difference between the IE and CU methods in the jet generation is found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flammability limits for flames propagating in a rich propane/air mixture under gravity conditions appeared to be 6.3% C3H8 for downward propagation and 9.2% C3H8 for upward propagation. Different limits might be explained by the action of preferential diffusion of the deficient reactant (Le < 1) on the limit flames, which are in different states of instability. In one of the previous studies, the flammability limits under microgtravity conditions were found to be between the upward and downward limits obtained in a standard flammability tube under normal gravity conditions. It was found in those experiments that there are two limits under microgravity conditions: one indicated by visible flame propagation and another indicated by an increase of pressure without observed flame propagation. These limits were found to be far behind the limit for downward-propagating flame at 1 g (6.3% C3H8) and close to the limit for upward-propagating flame at 1 g (9.2% C3H8). It was decided in the present work to apply a special schlieren system and instant temperature measuring system for drop tower experiments to observe combustion development during propagation of the flame front. A small cubic closed vessel (inner side, 9 cm 9 cm 9 cm) with schlieren quality glass windows were used to study limit flames under gravity and microgravity conditions. Flame development in rich limit mixtures, not visible in previous experiments under microgravity conditions for strait photography, was identified with the use of the schlieren method and instant temperature measuring system. It was found in experiments in a small vessel that there is practically no difference in flammability limits under gravity and microgravity conditions. In this paper, the mechanism of flame propagation under these different conditions is systematically studied and compared and limit burning velocity is estimated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A sediment core was collected from the centre of Wanghu Lake, in the Middle Reaches of the Yangtze River. The recent part of the core was dated using a combination of Pb-210 and spheroidal carbonaceous particle (SCP) techniques. Extrapolating this chronology dated the laminated section of the core, between 723 and 881 mm, to the first half of the 18th century and this section was selected for detailed study. The thicknesses of the laminae were measured using reflecting and polarizing microscopes whilst geochemistry was determined by an electron probe. The thickness of the dark layers was found to be positively correlated with titanium concentrations, and negatively correlated with aluminium and potassium concentrations. The thickness of the light layers was found to be negatively correlated with the concentrations of titanium. It is concluded that the dark layers were deposited from the Fushui River, a tributary of the Yangtze River, under periods of normal flow whilst the light Layers were mainly deposited from the Yangtze River itself during flood periods. Documentary evidence for floods occurring in the take catchment corresponded with thick laminations of high titanium concentration. Further, two of the three thickest, light laminations with low titanium concentrations were found to be synchronous with recorded flood dates of the main Yangtze River in its Middle Reaches, but one was synchronous with a local drought. These data suggest that the Lake sediment provides an archive of the relative water levels of the Yangtze and Wanghu including floods of both the main Yangtze River and the local hydrological regime. (c) 2006 Elsevier B.V. All rights reserved.