18 resultados para Distribution transformer modeling
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Based upon the spatially inhomogeneous Boltzmann equation in two-term approximation coupled with electromagnetic and fluid model analysis for the recently developed inductively coupled plasma sources, a self-consistent electron kinetic model is developed. The electron distribution function, spatial distributions of the electron density and ionization rate are calculated and discussed.
Resumo:
A numerical method to estimate temperature distribution during the cure of epoxy-terminated poly(phenylene ether ketone) (E-PEK)-based composite is suggested. The effect of the temperature distribution on the selection of cure cycle is evaluated using a suggested alternation criterion. The effect of varying heating rate and thickness on the temperature distribution, viscosity distribution and distribution of the extent of cure reaction are discussed based on the combination of the here-established temperature distribution model and the previously established curing kinetics model and chemorheological model. It is found that, for a thin composite (<=10mm) and low heating rate (<=2.5K/min), the effect of temperature distribution on cure cycle and on the processing window for pressure application can be neglected. Low heating rate is of benefit to reduce the temperature gradient. The processing window for pressure application becomes narrower with increasing thicknesses of composite sheets. The validity of the temperature distribution model and the modified processing window is evaluated through the characterization of mechanical and physical properties of E-PEK-based composite fabricated according to different temperature distribution conditions.
Resumo:
Aimed at brittle composites reinforced by randomly distributed short-fibers with a relatively large aspect ratio, stiffness modulus and strength, a mesoscopic material model was proposed. Based on the statistical description, damage mechanisms, damage-induced anisotropy, damage rate effect and stress redistribution, the constitutive relation were derived. By taking glass fiber reinforced polypropylene polymers as an example, the effect of initial orientation distribution of fibers, damage-induced anisotropy, and damage-rate effect on macro-behaviors of composites were quantitatively analyzed. The theoretical predictions compared favorably with the experimental results.
Resumo:
Both a real time optical interferometric experiment and a numerical simulation of two-dimension non-steady state model were employed to study the growth process of aqueous sodium chlorate crystals. The parameters such as solution concentration distribution, crystal dimensions, growth rate and velocity field were obtained by both experiment and numerical simulation. The influence of earth gravity during crystal growth process was analyzed. A reasonable theory model corresponding to the present experiment is advanced. The thickness of concentration boundary layer was investigated especially. The results from the experiment and numerical simulation match well.
Resumo:
In this paper, the possible error sources of the composite natural frequencies due to modeling the shape memory alloy (SMA) wire as an axial force or an elastic foundation and anisotropy are discussed. The great benefit of modeling the SMA wire as an axial force and an elastic foundation is that the complex constitutive relation of SMA can be avoided. But as the SMA wire and graphite-epoxy are rigidly bonded together, such constraint causes the re-distribution of the stress in the composite. This, together with anisotropy, which also reduces the structural stiffness can cause the relatively large error between the experimental data and theoretical results.
Resumo:
Bulk single crystals of GaN and AlN can be grown from supercritical fluids using the ammonothermal method, which utilizes ammonia as fluid rather than water as in the hydrothermal process. In this process, a mineralizer such as amide, imide or nitride is used to attack a bulk nitride feedstock at temperatures from 200°C to 500°C and pressures from 1 to 4 kbar. Ammonothermal systems have been modeled here using fluid dynamics, thermodynamics and heat transfer models. The nutrient is considered as a porous media bed and the fluid flow is simulated using the Darcy-Brinkman-Forchheimer model. The resulting governing equations are solved using the finite volume method. The effects of particle size on flow pattern and temperature distribution in an autoclave are analyzed.
Resumo:
英文摘要: Rosetting, or forming a cell aggregate between a single target nucleated cell and a number of red blood cells (RBCs), is a simple assay for cell adhesion-mediated by specific receptor-ligand interaction. For example, rosette formation between sheep RBC and human lymphocytes has been used to differentiate T cells from B cells. Rosetting assay is commonly used to determine the interaction of Fc gamma-receptors (Fc gamma R) expressed on inflammatory cells and IgG-coated on RBCs. Despite its wide use in measuring cell adhesion, the biophysical parameters of rosette formation have not been well characterized. Here we developed a probabilistic model to describe the distribution of rosette sizes, which is Poissonian. The average rosette size is predicted to be proportional to the apparent two-dimensional binding affinity of the interacting receptor-ligand pair and their site densities. The model has been supported by experiments of rosettes mediated by four molecular interactions: Fc gamma RIII interacting with IgG, T cell receptor and coreceptor CD8 interacting with antigen peptide presented by major histocompatibility molecule, P-selectin interacting with P-selectin glycoprotein ligand 1 (PSGL-1), and L-selectin interacting with PSGL-1. The latter two are structurally similar and are different from the former two. Fitting the model to data enabled us to evaluate the apparent effective two-dimensional binding affinity of the interacting molecular pairs: 7.19x10(-5) mu m(4) for Fc gamma RIII-IgG interaction, 4.66x10(-3) mu m(4) for P-selectin-PSGL-1 interaction, and 0.94x10(-3) mu m(4) for L-selectin-PSGL-1 interaction. These results elucidate the biophysical mechanism of rosette formation and enable it to become a semiquantitative assay that relates the rosette size to the effective affinity for receptor-ligand binding.
Resumo:
Modeling of fluid flows in crystal growth processes has become an important research area in theoretical and applied mechanics. Most crystal growth processes involve fluid flows, such as flows in the melt, solution or vapor. Theoretical modeling has played an important role in developing technologies used for growing semiconductor crystals for high performance electronic and optoelectronic devices. The application of devices requires large diameter crystals with a high degree of crystallographic perfection, low defect density and uniform dopant distribution. In this article, the flow models developed in modeling of the crystal growth processes such as Czochralski, ammonothermal and physical vapor transport methods are reviewed. In the Czochralski growth modeling, the flow models for thermocapillary flow, turbulent flow and MHD flow have been developed. In the ammonothermal growth modeling, the buoyancy and porous media flow models have been developed based on a single-domain and continuum approach for the composite fluid-porous layer systems. In the physical vapor transport growth modeling, the Stefan flow model has been proposed based on the flow-kinetics theory for the vapor growth. In addition, perspectives for future studies on crystal growth modeling are proposed. (c) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
We present a model in this paper for predicting the inverse Hall-Petch phenomenon in nanocrystalline (NC) materials which are assumed to consist of two phases: grain phase of spherical or spheroidal shapes and grain boundary phase. The deformation of the grain phase has an elasto-viscoplastic behavior, which includes dislocation glide mechanism, Coble creep and Nabarro-Herring creep. However the deformation of grain boundary phase is assumed to be the mechanism of grain boundary diffusion. A Hill self-consistent method is used to describe the behavior of nanocrystalline pure copper subjected to uniaxial tension. Finally, the effects of grain size and its distribution, grain shape and strain rate on the yield strength and stress-strain curve of the pure copper are investigated. The obtained results are compared with relevant experimental data in the literature.
Resumo:
A semi-gas kinetics (SGK) model for performance analyses of flowing chemical oxygen-iodine laser (COIL) is presented. In this model, the oxygen-iodine reaction gas flow is treated as a continuous medium, and the effect of thermal motions of particles of different laser energy levels on the performances of the COIL is included and the velocity distribution function equations are solved by using the double-parameter perturbational method. For a premixed flow, effects of different chemical reaction systems, different gain saturation models and temperature, pressure, yield of excited oxygen, iodine concentration and frequency-shift on the performances of the COIL are computed, and the calculated output power agrees well with the experimental data. The results indicate that the power extraction of the SGK model considering 21 reactions is close to those when only the reversible pumping reaction is considered, while different gain saturation models and adjustable parameters greatly affect the output power, the optimal threshold gain range, and the length of power extraction.
Resumo:
An efficient method for solving the spatially inhomogeneous Boltzmann equation in a two-term approximation for low-pressure inductively coupled plasmas has been developed. The electron distribution function (EDF), a function of total electron energy and two spatial coordinates, is found self-consistently with the static space-charge potential which is computed from a 2D fluid model, and the rf electric field profile which is calculated from the Maxwell equations. The EDF and the spatial distributions of the electron density, potential, temperature, ionization rate, and the inductive electric field are calculated and discussed. (C) 1996 American Institute of Physics.
Resumo:
Large size bulk silicon carbide (SiC) crystals are commonly grown by the physical vapor transport (PVT) method. The PVT growth of SiC crystals involves sublimation and condensation, chemical reactions, stoichiometry, mass transport, induced thermal stress, as well as defect and micropipes generation and propagation. The quality and polytype of as-grown SiC crystals are related to the temperature distribution inside the growth chamber during the growth process, it is critical to predict the temperature distribution from the measured temperatures outside the crucible by pyrometers. A radio-frequency induction-heating furnace was used for the growth of large-size SiC crystals by the PVT method in the present study. Modeling and simulation have been used to develop the SiC growth process and to improve the SiC crystal quality. Parameters such as the temperature measured at the top of crucible, temperature measured at the bottom of the crucible, and inert gas pressure are used to control the SiC growth process. By measuring the temperatures at the top and bottom of the crucible, the temperatures inside the crucible were predicted with the help of modeling tool. SiC crystals of 6H polytype were obtained and characterized by the Raman scattering spectroscopy and SEM, and crystals of few millimeter size grown inside the crucible were found without micropipes. Expansion of the crystals were also performed with the help of modeling and simulation.
Resumo:
The initiation of laser damage within optical coatings can be better understood by thermal-mechanical modeling of coating defects. The result of this modeling shows that a high-temperature rise and thermal stress can be seen just inside the nodular defect compared to surrounding coating layers. The temperature rise and thermal stress tend to increase with seed diameter. Shallower seed tend to cause higher temperature rise and greater thermal stress. There is a critical seed depth at which thermal stress is largest. The composition of the seed resulting from different coating-material emission during evaporation can affect the temperature rise and thermal stress distribution.