101 resultados para Direction of Arrival Estimator
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The peripheries of circular foils of 30 mm in diameter and 0.1 mm thick are fixed while their surfaces are subjected to a long pulsed laser over a central region that may vary from 2 mm to 6 mm in diameter. Failure is observed and classified into three stages; they are referred to as thermal bulging, localized shear deformation, and perforation by plugging. A distinct feature of the failure mode is that bulging and plugging occurred in the direction opposite to the incident laser beam. Such a phenomenon can be expected to occur for a laser intensity threshold value of about 0.61 x 10(6) W/cm(2) beyond which local melting of the material begins to take place.
Resumo:
A static enclosure method was applied to determine the exchange of dimethyl sulfide (DMS) and carbonyl sulfide (OCS) between the surface of Sphagnum peatlands and the atmosphere. Measurements were performed concurrently with dynamic (flow through) enclosure measurements with sulfur-free air used as sweep gas. This latter technique has been used to acquire the majority of available data on the exchange of S gases between the atmosphere and the continental surfaces and has been criticized because it is thought to overestimate the true flux of gases by disrupting natural S gas gradients. DMS emission rates determined by both methods were not statistically different between 4 and >400 nmol m−2 h−1, indicating that previous data on emissions of at least DMS are probably valid. However, the increase in DMS in static enclosures was not linear, indicating the potential for a negative feedback of enclosure DMS concentrations on efflux. The dynamic enclosure method measured positive OCS flux rates (emission) at all sites, while data using static enclosures indicated that OCS was consumed from the atmosphere at these same sites at rates of 3.7 to 55 nmol m−2 h−1. Measurements using both enclosure techniques at a site devoid of vegetation showed that peat was a source of both DMS and OCS. However, the rate of OCS efflux from decomposing peat was more than counterbalanced by OCS consumption by vegetation, including Sphagnum mosses, and net OCS uptake occurred at all sites. We propose that all wetlands are net sinks for OCS.
Resumo:
The prediction of cracking direction in composite materials is of significance to the design of composite structures. This paper presents several methods for predicting the cracking direction in the double grooved tension-shear specimen which gives mixed-mode cracking. Five different criteria are used in this analysis: two of them have been used by other investigators and the others are proposed by the present authors. The strain energy density criterion proposed by G.C. Sih is modified to take account of the influence of the anisotropy of the strength on the direction of crack. The two failure criteria of Tsai-Hill and Norris are extended to predict the crack orientation. The stress distributions in the near-notch zone are calculated by using the 8-node quadrilateral isoparametric finite element method. The predictions of all the criteria except one are in good agreement with the experimental measurement. In addition, on the basis of the FEM results, the size of the zone in which the singular term is dominant is estimated.
Resumo:
Detailed investigations on the structural and mechanical properties of the forewing of the cicada were carried out. Measurement of the structures of the wings showed that the thickness of the membrane of each cell and the diameter of each vein were non-uniform in both the longitudinal and transverse directions, and their means were approximately 12.2 and 133.3 mum, respectively. However, the aspect ratios of the wings and the bodies were quite uniform and were approximately equal to 2.98 and 2.13, respectively. Based on the measured thickness, mass and area of the membranes of the cells, the mean density and the mean area density of the wing were approximately 2.3 g cm(-3) and 2.8 x 10(-3) g cm(-2), respectively. In addition, the diameters of the veins of the wings, including the diameters of the holes in the vein of the leading edge, were examined. The mechanical properties of the wing were investigated separately by nanoindentation and tensile testing. The results indicated that the mean Young's modulus, hardness and yield stress of the membranes of the wings were approximately 3.7 Gpa, 0.2 Gpa and 29 Mpa, respectively, and the mean Young's modulus and strength of the veins along the direction of the venation of wings were approximately 1.9 Gpa and 52 Mpa, respectively. Finally, the relevant results were briefly analyzed and discussed, providing a guideline to the biomimetic design of the aerofoil materials of micro air vehicles.
Resumo:
Existing models of baroclinic tides are based upon the "traditional approximation'', i. e., neglect of the horizontal component of the Earth's rotation, leading to a well- known conclusion that no freely propagating internal waves can exist beyond the critical latitude and the wave rays are symmetric to the vertical. However, recent studies have contended that the situation may change if both the vertical and horizontal components of the Earth's rotation are taken into account. With the full account of the Coriolis force, characteristics of the internal wavefield generated by tidal flow over uneven topography are investigated. It is found that "nontraditional effects'' profoundly change not only the dynamics of internal waves but also the rate at which the barotropic tidal energy is fed into the internal wavefield. Discarding the traditional approximation, internal waves are proved to be able to generate poleward of the critical latitude, rays of which are no longer symmetric and the limiting values of ray angles become greater or less than 90 degrees, depending on the local latitude and the direction of ray. More importantly, in contrast to the predictions of models based upon the traditional approximation, a substantial conversion occurs in the situations when stratification is so weak that the buoyancy frequency is below the tidal one.
Resumo:
How fibroin molecules fold themselves and further self-assemble into aggregations with specific structures when the solution concentration increases is the key to understanding the natural silk-forming process of the silkworm. A regenerated Bombyx mori silk fibroin solution was prepared, and serially diluted solutions were coated on aminated coverslips. Atomic force microscopy (AFM) observations of the topography of fibroin molecules revealed a transformation from rodlike aggregations 100-200 nm long to small globules 50 mn in diameter with decreasing concentrations. When the incubation duration increased, the aggregations of fibroin molecules showed a self-assembling process, which was measured with AFM. In particular, after the molecules were incubated for more than 20 min, rodlike micelles formed and were distributed evenly on the surface of the aminated slides. Flow chamber technology was used to study the effect of the shear loading on the topography of the fibroin molecular aggregations. After a shear loading was applied, larger rodlike particles formed at a higher incubation concentration in comparison with those at a lower concentration and were obviously oriented along the direction of fluid flow.
Resumo:
Two-dimensional ZnO nanowall networks were grown on ZnO-coated silicon by thermal evaporation at low temperature without catalysts or additives. All of the results from scanning electronic spectroscope, X-ray diffraction and Raman scattering confirmed that the ZnO nanowalls were vertically aligned and c-axis oriented. The room-temperature photoluminescence spectra showed a dominated UV peak at 378 nm, and a much suppressed orange emission centered at similar to 590 nm. This demonstrates fairly good crystal quality and optical properties of the product. A possible three-step, zinc vapor-controlled process was proposed to explain the growth of well-aligned ZnO nanowall networks. The pre-coated ZnO template layer plays a key role during the synthesis process, which guides the growth direction of the synthesized products. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Detailed investigations on the microstructure and the mechanical properties of the wing membrane of the dragonfly are carried out. It is found that in the direction of the thickness the membrane was divided into three layers rather than a single entity as traditionally considered, and on the surfaces the membrane displays a random distribution rough microstructure that is composed of numerous nanometer scale columns coated by the cuticle wax secreted. The characteristics of the surface structure are measured and described. The mechanical properties of the membranes taken separately from the wings of live and dead dragonflies are investigated by the nanoindentation technique. The Young's moduli obtained here are approximately two times greater than the previous result, and the reasons that yield the difference are discussed.
Resumo:
Geckos and many insects have evolved elastically anisotropic adhesive tissues with hierarchical structures that allow these animals not only to adhere robustly to rough surfaces but also to detach easily upon movement. In order to improve Our understanding of the role of elastic anisotropy in reversible adhesion, here we extend the classical JKR model of adhesive contact mechanics to anisotropic materials. In particular, we consider the plane strain problem of a rigid cylinder in non-slipping adhesive contact with a transversely isotropic elastic half space with the axis of symmetry oriented at an angle inclined to the surface. The cylinder is then subjected to an arbitrarily oriented pulling force. The critical force and contact width at pull-off are calculated as a function of the pulling angle. The analysis shows that elastic anisotropy leads to an orientation-dependent adhesion strength which can vary strongly with the direction of pulling. This study may suggest possible mechanisms by which reversible adhesion devices can be designed for engineering applications. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Detailed investigations on the microstructure and the mechanical properties of the wing membrane of the dragonfly were carried out. It was found that in the direction of the thickness the membrane was divided into three layers rather than as traditionally considered as a single entity, and on the surfaces the membrane displayed a random distribution rough microstructure that was composed of numerous nanometer scale columns coated by the cuticle wax secreted. The characteristics of the surfaces were accurately measured and a statistical radial distribution function of the columns was presented to describe the structural properties of the surfaces. Based on the surface microstructure, the mechanical properties of the membranes taken separately from the wings of living and dead dragonflies were investigated by the nanoindentation technique. The Young's moduli obtained here are approximately two times greater than the previous result, and the reasons that yield the difference are discussed. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
It is suggested that the oscillation of thermocapillary convection may be excited by the buoyancy instability. By means of numerical simulation of the finite-element method, the temperature distributions in the liquid bridge are qualitatively analyzed. The temperature gradient in a certain flow region of liquid bridge may turn to be parallel to the direction of gravity when the temperature difference △T between two boundary rods of liquid bridge is larger than the critical value. The buoyancy instability may be excited, and then the thermocapillary oscillatory convection appears, as the temperature difference increases further. The distribution of the critical Marangoni number in the micro-gravity environment is derived from the data on the ground experiments. The results show that the onset of thermocapillary oscillatory convection is delayed in the case of smaller typical scale of liquid bridge and lower gravity environment.
Resumo:
n the authors' previous paper, the Strain Energy Density Ratio (SEDR) criterion was proposed. As an example of applications, it was used to predict cracking direction of mixed-mode fracture in a random short fibre laminated composite.
Resumo:
A study of carbon fiber reinforced epoxy composite material with 0° ply or ±45°ply(unnotched or with edge notch) was carried out under static tensile and tension-tensioncyclic loading testing. Static and fatigue behaviour and damage failure modes in unnotched/notched specimens plied in different manners were analysed and compared with each other.A variety of techniques (acoustic emission, two types of strain extensometer, high speed pho-tography, optical microscopy, scanning electron microscope, etc.) were used to examine thedamage of the laminates. Experimental results show that when these carbon/epoxy laminateswith edge notch normal to the direction of the load are axially loaded in static or fatiguetension, the crack does not propagate along the length of notch but is in the interface (fiberdirection). The notch has no substantial effect on the stresses at the unnotched portion. Thedamage failure mechanism is discussed.