96 resultados para Deposition of subglacial till
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A new DC plasma torch in which are jet states and deposition parameters can be regulated over a wide range has been built. It showed advantages in producing stable plasma conditions at a small gas flow rate. Plasma jets with and without magnetically rotated arcs could be generated. With straight are jet deposition, diamond films could be formed at a rate of 39 mu m/h on Mo substrates of Phi 25 mm, and the conversion rate of carbon in CH4 to diamond was less than 3%. Under magnetically rotated conditions, diamond films could be deposited uniformly in a range of Phi 40 mm at 30 mu m/h, with a quite low total gas flow rate and high carbon conversion rate of over 11%. Mechanisms of rapid and uniform deposition of diamond films with low gas consumption and high carbon transition efficiency are discussed.
Resumo:
The problem of thermophoretic deposition of small particles onto cold surfaces is studied in two-dimensional and axisymmetric flow fields. The particle concentration equation is solved numerically together with the momentum and energy equations in the laminar boundary layer with variable density effect included. It is shown explicitly to what extent the particle concentration and deposition rate at the wall are influenced by the density variation effect for external flow past bodies. The general numerical procedure is given for two-dimensional and axisymmetric cases and is illustrated with examples of thermophoretic deposition of particles in flows past a cold cylinder and a sphere.
Resumo:
Some of the calculated parameters show a maximum value for specimens heat-treated at about 100°C. The tensile strength is, for instance, substantially higher for specimens shock-heated at 100°C than for non-heated ones. Another striking feature is the initial decrease of the diameter observed in specimens heat-treated at 600°C when loaded in uniaxial compression. Both optical microscopy and DSA experiments reveal a large increase in microcracking when the heat-treatment temperature exceeds 300°C.
Resumo:
The propagation of the fast muon population mainly due to collisional effect in a dense deuterium-tritium (DT for short) mixture is investigated and analysed within the framework of the relativistic Fokker-Planck equation. Without the approximation that the muons propagate straightly in the DT mixture, the muon penetration length, the straggling length, and the mean transverse dispersion radius are calculated for different initial energies, and especially for different densities of the densely compressed DT mixture in our suggested muon-driven fast ignition (FI). Unlike laser-driven FI requiring super-high temperature, muons can catalyze DT fusion at lower temperatures and may generate an ignition sparkle before the self-heating fusion follows. Our calculation is important for the feasibility and the experimental study of muon-driven FI.
Resumo:
Au nanoparticles, which were photoreduced by a Nd:YAG laser in HAuCl4 solution containing TiO2 colloid and accompanied by the TiO2 particles, were deposited on the substrate surface. The film consisting of Au/TiO2 particles was characterized by the absorption spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The adhesion between the film and substrate was evaluated by using adhesive tape test. It was found that the presence of TiO2 dramatically enhanced the adhesion strength between the film and the substrate, as well as the deposition rate of film. The mechanism for the deposition of Au/TiO2 film was also discussed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Optical properties for ZnO thin films grown on (100) γ-LiAlO2 (LAO) substrate by pulsed laser deposition method were investigated. The c-axis oriented ZnO films were grown on (100) γ-LiAlO2 substrates at the substrate temperature of 550 Celsius degrees. The transmittance of the films was over 85%. Peaks attributed to excitons were shown in absorption spectra, which indicated that thin films had high crystallinity. Photoluminescence spectra with the maximum peak at 540 nm were observed at room temperature, which seemed to be ascribed to oxygen vacancy in the ZnO films caused by diffusion of Li from the substrates into the films during the deposition.
Resumo:
Hydrogenated microcrystalline silicon (mu c-Si:H) thin films were prepared by high-pressure radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD) with a screened plasma. The deposition rate and crystallinity varying with the deposition pressure, rf power, hydrogen dilution ratio and electrodes distance were systematically studied. By optimizing the deposition parameters the device quality mu c-Si:H films have been achieved with a high deposition rate of 7.8 angstrom/s at a high pressure. The V-oc of 560 mV and the FF of 0.70 have been achieved for a single-junction mu c-Si:H p-i-n solar cell at a deposition rate of 7.8 angstrom/s.
Resumo:
Thin aluminum oxide films were deposited by a new and simple physicochemical method called chemical liquid phase deposition (CLD) on semiconductor materials. Aluminum sulfate with crystallized water and sodium bicarbonate were used as precursors for film growth, and the control of the system's pH value played an important role in this experiment. The growth rate is 12 nm/h with the deposition at [Al-2(SO4)(3)]=0.0837 mol.L-1, [NaHCO3]=0.214 mol.L-1, 15 degreesC. Post-growth annealing not only densifies and purifies the films, but results in film crystallization as well. Excellent quality of Al2O3 films in this work is supported by electron dispersion spectroscopy, Fourier transform infrared spectrum, X-ray diffraction spectrum and scanning electron microscopy photograph.
Resumo:
This paper presents a detailed study on the effects of carbon incorporation and substrate temperature on structural, optical, and electrical properties of p-type nanocrystalline amorphous silicon films. A p-nc-SiC: H thin film with optical gap of 1.92 eV and activation energy of 0.06 eV is obtained through optimizing the plasma parameters. By using this p-type window layer, single junction diphasic nc-SiC : H/a-Si : H solar cells have been successfully prepared with a V-oc of 0.94 eV.
Resumo:
The GaNAs alloys have been grown by metalorganic chemical vapor deposition (MOCVD) using dimethylhydrazine (DMHv) as the nitrogen precursor, triethylgallium (TEGa) and trimethylgallium (TMGa) as the gallium precursors, respectively. Both symmetric (004) and asymmetric (1 1 5) high-resolution X-ray diffraction (HRXRD) were used to determine the nitrogen content in GaNAs layers. Secondary ion mass spectrometry (SIMS) was used to obtain the impurity content. T e influence of different Ga precursors on GaNAs quality has been investigated. Phase separation is observed in the < 1 1 5 > direction when using TMGa as the Ga precursor but not observed when using TEGa. This phenomenon should originate from the parasitic reaction between the Ga and N precursors. Furthermore. samples grown with TEGa have better quality and less impurity contamination than those with TMGa. Nitrogen content of 5.742% has been achieved using TEGa and no phase separation observed in the sample. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
ZnO, as a wide-band gap semiconductor, has recently become a new research focus in the field of ultraviolet optoelectronic semiconductors. Laser molecular beam epitaxy (L-MBE) is quite useful for the unit cell layer-by-layer epitaxial growth of zinc oxide thin films from the sintered ceramic target. The ZnO ceramic target with high purity was ablated by KrF laser pulses in an ultra high vacuum to deposit ZnO thin film during the process of L-MBE. It is found that the deposition rate of ZnO thin film by L-MBE is much lower than that by conventional pulsed laser deposition (PLD). Based on the experimental phenomena in the ZnO thin film growth process and the thermal-controlling mechanism of the nanosecond (ns) pulsed laser ablation of ZnO ceramic target, the suggested effective ablating time during the pulse duration can explain the very low deposition rate of the ZnO film by L-MBE. The unique dynamic mechanism for growing ZnO thin film is analyzed. Both the high energy of the deposition species and the low growth rate of the film are really beneficial for the L-MBE growth of the ZnO thin film with high crystallinity at low temperature.