3 resultados para DFD

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high Reynolds number flow contains a wide range of length and time scales, and the flow domain can be divided into several sub-domains with different characteristic scales. In some sub-domains, the viscosity dissipation scale can only be considered in a certain direction; in some sub-domains, the viscosity dissipation scales need to be considered in all directions; in some sub-domains, the viscosity dissipation scales are unnecessary to be considered at all. For laminar boundary layer region, the characteristic length scales in the streamwise and normal directions are L and L Re-1/ 2 , respectively. The characteristic length scale and the velocity scale in the outer region of the boundary layer are L and U, respectively. In the neighborhood region of the separated point, the length scale l<DFD) algorithm. Analysis shows that the basic conservative equations for discrete cells are the Euler equations, NS- and diffusion parabolized (DP) NS equations. In this paper, a new multiscale-domain decomposition method is developed for the high Reynolds number flow. First, the whole domain is decomposed to different sub-domains with the different characteristic scales. Then the different dominant equation of all sub-domains is defined according to the diffusion parabolized (DP) theory of viscous flow. Finally these different equations are solved simultaneously in whole computational region. For numerical tests of high Reynolds numerical flows, two-dimensional supersonic flows over rearward and frontward steps as well as an interaction flow between shock wave and boundary layer were solved numerically. The pressure distributions and local coefficients of skin friction on the wall are given. The numerical results obtained by the multiscale-domain decomposition algorithm are well agreement with those by NS equations. Comparing with the usual method of solving the Navier-Stokes equations in the whole flow, under the same numerical accuracy, the present multiscale domain decomposition method decreases CPU consuming about 20% and reflects the physical mechanism of practical flow more accurately.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文首先讨论扩散抛物化(DP)NS方程组的早期研究工作:它的提出、数学性质、意义和在CFD中的应用,然后讨论扩散抛物化理论的一些新发展。这些新发展是对NS方程组数值计算进行物理分析的基础上得到的,其中包括NS方程组差分计算时,粘性剪切流对网格间距和格式精度的要求;粘性项只保留剪切粘性项的广义扩散抛物化(GDP)NS方程组,它的性质和应用。由于高Re数流动在NS方程组的差分计算中,网格Re数彼此相差悬殊的特点,产生了计算离散单元守恒方程组的新的算法思路,即离散流体力学(DFD)算法。在DFD算法中需要同时计算三种不同的守恒方程组(Euler,DPNS和NS方程组)。本文讨论了DFD格式的构造、它的优点和应用。并以超声速绕前后台阶流动为算例,来说明GDPNS方程组的用处和DFD算法的优点。DPNS方程组、GDPNS方程组、DFD算法是高智提出的,对这些问题他和合作者从

Relevância:

10.00% 10.00%

Publicador:

Resumo:

微观尺度下的观测与操作是进行微纳米科学技术研究与实现、微纳米特性发现与利用、加工制造的重要技术手段。因此微纳米操作的关键技术问题主要包括两个方面:微纳米操作的观测成像,通过成像微纳米尺度下的物体可以被观测者所感知和观测;利用感知与观测信息指导微纳米尺度下机械操作控制。深度信息在计算机视觉的研究中占有着重要的地位,它使我们更好地理解现实世界中物体的3D关系。因此,利用深度信息实现3D测量逐渐被应用于微纳米操作的观测成像领域。工作域显微图像是唯一能反映被控目标体运动和位置的反馈信息,自然对象的深度信息也只能从此中获得。虽然很难自动地从这个平面图像中获得,但根据显微镜点扩散模型的光学特点,可以构造合理的模糊度判据,实现对象深度信息恢复。本文作者以微观尺度下的3D视觉观测与可视化为应用背景,通过分析几何光学成像中的各种成像规律。建立图像的模糊度判据,并利用该判据完成了微观尺度下的3D视觉观测与可视化。主要工作包括:(1)分析光学成像的基本原理,了解光学成像过程中聚焦和离焦成像现象发生条件和描述方法;分析图像清晰/模糊程度与景物深度变化之间的关系规律,进而给出基于光学图像信息的微观景物深度测量理论依据;(2)结合序列图像的清晰/模糊程度变化规律,分析不同测度算子对于清晰/模糊程度响应的灵敏度与适应性;提出建立适宜的模糊测度算子方法。(3)基于模糊测度算子和模糊化测度分布模型,提出建立微观尺度下的显微视觉图像与实际景物的模糊度-深度关系模型的获取实验方法。设计实验系统与实验方法,完成微观3D视觉观测;(4)通过基于模糊化测度的微观景物深度信息获取研究,提出微观景物的3D重建方法,实现微观尺度下的3D重建及其可视化方法,完成实验验证。本文就微纳米技术研究中的显微成像离焦现象进行了分析,给出了建立基于模糊测度的微米尺度下离焦度与景物深度信息关系的方法;分析了不同梯度算子所具有的不同模糊测度响应;并以实验验证了利用这种模糊测度可以对微观尺度下的景物进行深度信息获取,并且利用深度信息进行3D重建。