扩散抛物化(DP)NS方程组的意义及其在计算流体力学中的应用
Data(s) |
2002
|
---|---|
Resumo |
本文首先讨论扩散抛物化(DP)NS方程组的早期研究工作:它的提出、数学性质、意义和在CFD中的应用,然后讨论扩散抛物化理论的一些新发展。这些新发展是对NS方程组数值计算进行物理分析的基础上得到的,其中包括NS方程组差分计算时,粘性剪切流对网格间距和格式精度的要求;粘性项只保留剪切粘性项的广义扩散抛物化(GDP)NS方程组,它的性质和应用。由于高Re数流动在NS方程组的差分计算中,网格Re数彼此相差悬殊的特点,产生了计算离散单元守恒方程组的新的算法思路,即离散流体力学(DFD)算法。在DFD算法中需要同时计算三种不同的守恒方程组(Euler,DPNS和NS方程组)。本文讨论了DFD格式的构造、它的优点和应用。并以超声速绕前后台阶流动为算例,来说明GDPNS方程组的用处和DFD算法的优点。DPNS方程组、GDPNS方程组、DFD算法是高智提出的,对这些问题他和合作者从 |
Identificador | |
Idioma(s) |
中文 |
Publicador |
中国动力工程学会 |
Tipo |
会议论文 |