19 resultados para Cutting tools
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
By means of Tersoff and Morse potentials, a three-dimensional molecular dynamics simulation is performed to study atomic force microscopy cutting on silicon monocrystal surface. The interatomic forces between the workpiece and the pin tool and the atoms of workpiece themselves are simulated. Two partial edge dislocations are introduced into workpiece Si, it is found that the motion of dislocations does not occur during the atomic force microscopy cutting processing. Simulation results show that the shear stress acting on dislocations is far below the yield strength of Si. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
By means of Tersoff and Morse potentials, a three-dimensional molecular dynamics simulation is performed to study atomic force microscopy cutting on silicon monocrystal surface. The interatomic forces between the workpiece and the pin tool and the atoms of workpiece themselves are calculated. A screw dislocation is introduced into workpiece Si. It is found that motion of dislocations does not occur during the atomic force microscopy cutting processing. Simulation results show that the shear stress acting on dislocation is far below the yield strength of Si.
Resumo:
We investigate the laser actions of 5at.% Yb:Gd2xY2(1-x)SiO5 (Yb:GYSO; x = 0.1) crystals with different cutting directions, parallel and vertical to the growth axis. Our results show that the cutting direction of the sample plays an astonished role in the laser operation. The sample cut vertically to the growth axis possesses the favourable lasing characteristics. Its output power reaches 3.13W at 1060nm with a slope efficiency of 44.68% when the absorbed pump power is 8.9 W. In contrast, the sample cut parallel reaches only 1.65 W at 1044 nm with a slope elLiciency of 33.76% with absorbed pump power of 7.99 W. The absorption and emission spectra of the two samples are examined and the merit factor M is calculated. Our analysis is in agreement well with the experimental results. The wavelength tuning range of the superior sample covers from 1013.68 nm to 1084.82 nm.
Resumo:
The degradation of image quality caused by aberrations of projection optics in lithographic tools is a serious problem in optical lithography. We propose what we believe to be a novel technique for measuring aberrations of projection optics based on two-beam interference theory. By utilizing the partial coherent imaging theory, a novel model that accurately characterizes the relative image displacement of a fine grating pattern to a large pattern induced by aberrations is derived. Both even and odd aberrations are extracted independently from the relative image displacements of the printed patterns by two-beam interference imaging of the zeroth and positive first orders. The simulation results show that by using this technique we can measure the aberrations present in the lithographic tool with higher accuracy. (c) 2006 Optical Society of America.
Resumo:
As a critical dimension shrinks, the degradation in image quality caused by wavefront aberrations of projection optics in lithographic tools becomes a serious problem. It is necessary to establish a technique for a fast and accurate in situ aberration measurement. We introduce what we believe to be a novel technique for characterizing the aberrations of projection optics by using an alternating phase-shifting mask. The even aberrations, such as spherical aberration and astigmatism, and the odd aberrations, such as coma, are extracted from focus shifts and image displacements of the phase-shifted pattern, respectively. The focus shifts and the image displacements are measured by a transmission image sensor. The simulation results show that, compared with the accuracy of the previous straightforward measurement technique, the accuracy of the coma measurement increases by more than 30% and the accuracy of the spherical-aberration measurement increases by approximately 20%. (c) 2006 Optical Society of America.
Resumo:
As the feature size decreases, degradation of image quality caused by wavefront aberrations of projection optics in lithographic tools has become a serious problem in the low-k1 process. We propose a novel measurement technique for in situ characterizing aberrations of projection optics in lithographic tools. Considering the impact of the partial coherence illumination, we introduce a novel algorithm that accurately describes the pattern displacement and focus shift induced by aberrations. Employing the algorithm, the measurement condition is extended from three-beam interference to two-, three-, and hybrid-beam interferences. The experiments are performed to measure the aberrations of projection optics in an ArF scanner. (C) 2006 Optical Society of America.
Resumo:
In this paper, we propose a novel method for measuring the coma aberrations of lithographic projection optics based on relative image displacements at multiple illumination settings. The measurement accuracy of coma can be improved because the phase-shifting gratings are more sensitive to the aberrations than the binary gratings used in the TAMIS technique, and the impact of distortion on displacements of aerial image can be eliminated when the relative image displacements are measured. The PROLITH simulation results show that, the measurement accuracy of coma increases by more than 25% under conventional illumination, and the measurement accuracy of primary coma increases by more than 20% under annular illumination, compared with the TAMIS technique. (c) 2007 Optical Society of America.
Resumo:
This paper discusses the algorithm on the distance from a point and an infinite sub-space in high dimensional space With the development of Information Geometry([1]), the analysis tools of points distribution in high dimension space, as a measure of calculability, draw more attention of experts of pattern recognition. By the assistance of these tools, Geometrical properties of sets of samples in high-dimensional structures are studied, under guidance of the established properties and theorems in high-dimensional geometry.