8 resultados para Control devices

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We realized write-once-read-many-times (WORM) memory devices based on pentacene and demonstrated that the morphology control of the vacuum deposited pentacene thin film is greatly important for achieving the unique nonvolatile memory properties. The resulted memory devices show a high ON/OFF current ratio (10(4)), long retention time (over 12 h), and good storage stability (over 240 h). The reduction of the barrier height caused by a large interface dipole and the damage of the interface dipole under a critical bias voltage have been used to explain the transition processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have observed, respectively, a negative differential resistance (NDR) and switching conduction in current-voltage (I-V) characteristics of organic diodes based on copper phthalocyanine (CuPc) film sandwiched between indium-tin-oxide (ITO) and aluminum (Al) by controlling the evaporation rate. The NDR effect is repeatable which can be well, controlled by sweep rate and start voltage, and the switching exhibits write-once-read-many-times (WORM) memory characteristics. The traps in the organic layer and interfacial dipole have been used to explain the NDR effect and switching conduction. This opens up potential applications for CuPc organic semiconductor in low power memory and logic circuits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(dimethylsiloxane) (PDMS) is usually considered as a dielectric material and the PDMS microchannel wall can be treated as an electrically insulated boundary in an applied electric field. However, in certain layouts of microfluidic networks, electrical leakage through the PDMS microfluidic channel walls may not be negligible, which must be carefully considered in the microfluidic circuit design. In this paper, we report on the experimental characterization of the electrical leakage current through PDMS microfluidic channel walls of different configurations. Our numerical and experimental studies indicate that for tens of microns thick PDMS channel walls, electrical leakage through the PDMS wall could significantly alter the electrical field in the main channel. We further show that we can use the electrical leakage through the PDMS microfluidic channel wall to control the electrolyte flow inside the microfluidic channel and manipulate the particle motion inside the microfluidic channel. More specifically, we can trap individual particles at different locations inside the microfluidic channel by balancing the electroosmotic flow and the electrophoretic migration of the particle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manipulation of the spin degree of freedom has been demonstrated in a spin-polarized electron plasma in a heterostructure by using exchange-interaction-induced dynamic spin splitting rather than the Rashba and Dresselhaus types, as revealed by time-resolved Kerr rotation. The measured spin splitting increases from 0.256 meV to 0.559 meV as the bias varies from -0.3 V to -0.6 V. Both the sign switch of the Kerr signal and the phase reversal of Larmor precessions have been observed with biases, which all fit into the framework of exchange-interaction-induced spin splitting. The electrical control of it may provide a new effective scheme for manipulating spin-selected transport in spin FET-like devices. Copyright (C) EPLA, 2008.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spin splitting of the AlyGa1-yAs/GaAs/AlxGa1-xAs/AlyGa1-yAs (x not equal y) step quantum wells (QWs) has been theoretically investigated with a model that includes both the interface and the external electric field contribution. The overall spin splitting is mainly determined by the interface contribution, which can be well manipulated by the external electric field. In the absence of the electric field, the Rashba effect exists due to the internal structure inversion asymmetry (SIA). The electric field can strengthen or suppress the internal SIA, resulting in an increase or decrease of the spin splitting. The step QW, which results in large spin splitting, has advantages in applications to spintronic devices compared with symmetrical and asymmetrical QWs. Due to the special structure design, the spin splitting does not change with the external electric field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A bipolar transport compound, 2,5-bis(4-(9-(2-ethylhexyl)-9H-carbazol-3-yl) phenyl)-1,3,4-oxadiazole (CzOXD), incorporating both electron-and hole-transport functionalities, was synthesized and fully characterized by H-1 NMR, C-13 NMR, elemental analysis and mass spectrometry. Its thermal, electrochemical, electronic absorption and photoluminescent properties were studied

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nonvolatile write-once-read-many-time (WORM-time) memory device based on poly(N-vinylcarbazole) (PVK) films was realized by thermally annealing. The device can be fabricated using a simple spin coat method. It was found that the control of PVK film surface morphology by thermally annealing plays an important role in achieving the WORM memory properties. The memory device showed an ON/OFF current ratio as high as 10(4) and the retention time was over 2000 s without degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer solar cells have the potential to become a major electrical power generating tool in the 21st century. R&D endeavors are focusing on continuous roll-to-roll printing of polymeric or organic compounds from solution-like newspapers-to produce flexible and lightweight devices at low cost. It is recognized, though, that besides the functional properties of the compounds the organization of structures on the nanometer level-forced and controlled mainly by the processing conditions applied-determines the performance of state-of-the-art polymer solar cells. In such devices the photoactive layer is composed of at least two functional materials that form nanoscale interpenetrating phases with specific functionalities, a so-called bulk heterojunction. In this perspective article, our current knowledge on the main factors determining the morphology formation and evolution is introduced, and gaps of our understanding on nanoscale structure-property relations in the field of high-performance polymer solar cells are addressed. Finally, promising routes toward formation of tailored morphologies are presented.