10 resultados para Complex systems prediction

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new algorithm, representing an important advance in determination of the functional relationship, is first reported here. The algorithm is very useful and convenient for analyzing the incorporation of impurities. To show how the algorithm works, two early and well-known vapor phase epitaxy (VPE) experiments-Ashen's (Ashen, D. J.; Dean, P. J.; Hurle, D. T. J.; Mullin, J. B.; Royle, A.; White, A. M. Gallium Arsenide and Related Compounds, Institute of Physics Conference Series 24, 1974; Institute of Physics: London, 1975; p 229.), involving the doping of silicon and DiLorenzo's (DiLorenzo, J. V. J. Cryst. Growth 1972, 17, 189.), involving the mole fraction effect-are calculated to find the functional relationship between the Si contamination and the partial pressure of HCl. The calculated curves agree with the experimental results. A conclusion that the calculated values are greater than the true values has been drawn.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systems design involves the determination of interdependent variables. Thus the precedence ordering for the tasks of determining these variables involves circuits. Circuits require planning decisions abut how to iterate and where to use estimates. Conventional planning techniques, such as critical path, do not deal with these problems. Techniques are shown in this paper which acknowledge these circuits in the design of systems. These techniques can be used to develop an effective engineering plan, showing where estimates are to be used, how design iterations and reviews are handled, and how information flows during the design work.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

By viewing the non-equilibrium transport setup as a quantum open system, we propose a reduced-density-matrix based quantum transport formalism. At the level of self-consistent Born approximation, it can precisely account for the correlation between tunneling and the system internal many-body interaction, leading to certain novel behavior such as the non-equilibrium Kondo effect. It also opens a new way to construct time-dependent density functional theory for transport through large-scale complex systems. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Estrogenic activities of emission samples generated by fossil fuel combustion were investigated with human estrogen receptor (ER) recombinant yeast bioassay. The results showed that there were weak but clear estrogenic activities in combustion emissions of fossil fuels including coal, petroleum, and diesel. The estrogenic relative potency (RP) of fossil fuel combustion was the highest in petroleum-fired car, followed by coal-fired stove, diesel-fired agrimotor, coal-fired electric power station. On the other hand, the estrogenic relative inductive efficiency (RIE) was the highest in coal-fired stove and coal-fired electric power station, followed by petroleum-fired car and diesel-fired agrimotor. The estrogenic activities in the sub-fractions from chromatographic separation of emitted materials were also determined. The results indicated that different chemical fractions in these complex systems have different estrogenic potencies. The GC/MS analysis of the emission showed that there were many aromatic carbonyls, big molecular alcohol, PAHs and derivatives, and substituted phenolic compounds and derivatives which have been reported as environmental estrogens. The existence of estrogenic substances in fossil fuel combustion demands further investigation of their potential adverse effects on human and on the ecosystem. The magnitude of pollution due to global usage of fossil fuels makes it imperative to understand the issue of fossil fuel-derived endocrine activities and the associated health risks, particularly the aggregated risks stemmed from exposure to toxicants of multiple sources. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electron transport through two parallel quantum dots is a kind of solid-state realization of double path interference We demonstrate that the inter-clot Coulomb correlation and quantum coherence would result in strong current fluctuations with a divergent Fano factor at zero frequency. We also provide physical interpretation for this surprising result, which displays its generic feature and allows us to recover this phenomenon in more complicated systems. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dynamic mean-field density functional method, driven from the generalized time-dependent Ginzburg-Landau equation, was applied to the mesoscopic dynamics of the multi-arms star block copolymer melts in two-dimensional lattice model. The implicit Gaussian density functional expression of a multi-arms star block copolymer chain for the intrinsic chemical potentials was constructed for the first time. Extension of this calculation strategy to more complex systems, such as hyperbranched copolymer or dendrimer, should be straightforward. The original application of this method to 3-arms block copolymer melts in our present works led to some novel ordered microphase patterns, such as hexagonal (HEX) honeycomb lattice, core-shell HEX lattice, knitting pattern, etc. The observed core-shell HEX lattice ordered structure is qualitatively in agreement with the experiment of Thomas [Macromolecules 31, 5272 (1998)].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

How to refine a near-native structure to make it closer to its native conformation is an unsolved problem in protein-structure and protein-protein complex-structure prediction. In this article, we first test several scoring functions for selecting locally resampled near-native protein-protein docking conformations and then propose a computationally efficient protocol for structure refinement via local resampling and energy minimization. The proposed method employs a statistical energy function based on a Distance-scaled Ideal-gas REference state (DFIRE) as an initial filter and an empirical energy function EMPIRE (EMpirical Protein-InteRaction Energy) for optimization and re-ranking. Significant improvement of final top-1 ranked structures over initial near-native structures is observed in the ZDOCK 2.3 decoy set for Benchmark 1.0 (74% whose global rmsd reduced by 0.5 angstrom or more and only 7% increased by 0.5 angstrom or more). Less significant improvement is observed for Benchmark 2.0 (38% versus 33%). Possible reasons are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multiscale coupling attracts broad interests from mechanics, physics and chemistry to biology. The diversity and coupling of physics at different scales are two essential features of multiscale problems in far-from-equilibrium systems. The two features present fundamental difficulties and are great challenges to multiscale modeling and simulation. The theory of dynamical system and statistical mechanics provide fundamental tools for the multiscale coupling problems. The paper presents some closed multiscale formulations, e.g., the mapping closure approximation, multiscale large-eddy simulation and statistical mesoscopic damage mechanics, for two typical multiscale coupling problems in mechanics, that is, turbulence in fluids and failure in solids. It is pointed that developing a tractable, closed nonequilibrium statistical theory may be an effective approach to deal with the multiscale coupling problems. Some common characteristics of the statistical theory are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The release of heavy metals from the combustion of hazardous wastes is an environmental issue of increasing concern. The species transformation characteristics of toxic heavy metals and their distribution are considered to be a complex problem of mechanism. The behavior of hazardous dyestuff residue is investigated in a tubular furnace under the general condition of hazardous waste pyrolysis and gasfication. Data interpretation has been aided by parallel theoretical study based on a thermodynamic equilibrium model based on the principle of Gibbs free energy minimization. The results show that Ni, Zn, Mn, and Cr are more enriched in dyestuff residue incineration than other heavy metals (Hg, As, and Se) subjected to volatilization. The thermodynamic model calculation is used for explaining the experiment data at 800 degrees C and analyzing species transformation of heavy metals. These results of species transformation are used to predict the distribution and emission characteristics of trace elements. Although most trace element predictions are validated by the measurements, cautions are in order due to the complexity of incineration systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The relationship between structures of complex fluorides and spectral structure of Eu(II) ion in complex fluorides (AB(m)F(n)) is investigated by means of pattern recognition methods, such as KNN, ALKNN, BAYES, LLM, SIMCA and PCA. A learning set consisting of 32 f-f transition emission host compounds and 31 d-f transition emission host compounds and a test set consisting of 27 host compounds were characterized by 12 crystal structural parameters. These parameters, i.e. features, were reduced from 12 to 6 by multiple criteria for the classification of these host compounds as f-f transition emission or d-f transition emission. A recognition rate from 79.4 to 96.8% and prediction capabilities from 85.2 to 92.6% were obtained. According to the above results, the spectral structures of Eu(II) ion in seven unknown host lattices were predicted.